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John M. Steele

Introduction

The field of Babylonian astronomy has been transformed over the past three decades,
changing from an almost exclusive focus on the mathematical astronomy of the late
period (generally known as ‘ACT’ astronomy after the acronym of Otto Neugebauer’s
classic Astronomical Cuneiform Texts published in ǟǧǣǣ) to embracing a much broader
consideration of all aspects of the subject, both early and late, mathematical and obser-
vational, astronomical and astrological, and their relationships between one another.
Lis Brack-Bernsen has been a key figure in turning the study of Babylonian astronomy
into what it is today.

Among Lis’ many contributions to the study of Babylonian astronomy, two have
been particularly significant in shaping the way that research in the field has progressed.
The first is by drawing attention to the so-called ‘lunar six’ time intervals – measurements
of the time between the moon and sun crossing the horizon on six specific occasions
during a month – which were regularly observed in Babylon from at least as early as
the middle of the seventh century BC. In a series of papers, Lis has explored the role of
lunar six observations and the development of the ACT lunar systems, the first attempt
to answer the question of the relation of observation and theory in Babylonian astron-
omy, and, even more significantly, uncovered a Babylonian method of using past lunar
six observations to predict future lunar six intervals which was completely unknown
to modern scholars and whose discovery has opened up a whole new area of research.
Almost as important as her own work in these areas has been Lis’s second transforma-
tive contribution to the study of Babylonian astronomy: the foundation of the so-called
‘Regensburg’ series workshops on Babylonian astronomy which have brought together
specialists for intensive, detailed, and collegial discussion of different aspects of Baby-
lonian astronomy. The first Regensburg workshop, held in Regensburg in ǠǞǞǠ, was so
successful that is has been followed by ‘Regensburg’ workshops in Amsterdam (ǠǞǞǢ),
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̟̘̞̚ ̣̤̜̕̕̕

Durham (ǠǞǞǦ), and Berlin (ǠǞǟǢ), with discussions already underway for the next in
the series. It is no exaggeration to say that these workshops have significantly influenced
the direction of research on Babylonian astronomy over the past decade.

In addition to her work on the lunar six, Lis has made significant contributions
to many other aspects of the study of Babylonian astronomy including deepening our
understanding of the early astronomical compendium MUL.APIN, and research on
the gnomon and the origin of the zodiac, the operation of the Babylonian calendar,
and the mathematical astrological schemes known as the Kalendertexte and dodecatemo-
ria schemes. Outside of Babylonian astronomy, she has also published important works
on Babylonian mathematics and, earlier in her career, on Mayan astronomy.

The papers in this collection are offered in honor of Lis Brack-Bernsen by her col-
leagues and friends, including many of the participants in the Regensburg workshops.
The topics of the articles are linked by the themes that have been at the center of much
of Lis’s own work: the Babylonian observational record, and the relationship between
observation and theory; the gnomon, sundials, and time measurement; and the relation-
ship between different scientific activities in the ancient world, especially the connec-
tions between mathematics and astronomy.

A tradition of regular and precise observation lies at the heart of Babylonian astron-
omy. One of the most common types of observation recorded by the Babylonian as-
tronomers is of the position of the moon and the planets relative to a group of reference
starts. In their paper Gerd Graßhoff and Erich Wenger analyze Babylonian observations
of this kind in order to understand the coordinate system underlying these measure-
ments, demonstrating that positions were measured parallel and perpendicular to the
ecliptic. The earliest systematic records of Babylonian observations date to the eighth
and seventh centuries BC. John Steele discusses one of the earliest records of planetary
observations, a compilation of reports of Mars’s synodic phenomena dating to the reign
of Nebuchadnezzar II. Using Lis Brack-Bernsen’s work on the lunar six as a starting
point, Teije de Jong discusses the development of Babylonian lunar theories from obser-
vations of the lunar six and eclipses. Peter Huber analyzes records of the length of the
month and their application to the problem of Old Babylonian chronology. Mathieu
Ossendrijver edits and discusses a text which describes methods of predicting planetary
conjunctions from past observations, using the same principle of ‘goal-year’ astronomy
as Lis Brack-Bernsen uncovered for the lunar six.

The gnomon and the sundial were used across the ancient world to measure time
and to study the daily and yearly motion of the sun. Elisabeth Rinner analyzes the mathe-
matics of conical sundials, one of the most common types of Greco-Roman sundial, and
its connection with theories of conic sections. Alexander Jones’s paper complements
Rinner’s by providing an analysis of spherical sundials and the geometry of curves. Also
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̢̙̞̤̟̥̤̙̟̞̔̓

related to time measurement, Hermann Hunger reedits (with the addition of a substan-
tial new fragment to the tablet) and analyzes a Neo-Assyrian text which has previously
been thought to concern seasonal hours, demonstrating that this is not the case.

The relationship between different types of ancient science is explored in the final
three papers. Jens Høyrup’s paper examines the various forms and places of mathematics
and mathematicians in the ancient world. Wayne Horowitz and John Steele examine
a peculiar cuneiform tablet which combines numbers with star names. Finally, Francesca
Rochberg studies the relationship between astronomy and divination, and in particular
the idea of norms and deviations from those norms in Babylonian divinatory traditions.

Together, the papers in this volume present a snapshot of research into the ancient
exact sciences. They demonstrate the wide variety of questions asked and approaches
used by historians of ancient science, and comprise, as we hope, a fitting tribute to Lis
Brack-Bernsen’s groundbreaking work in this field.

The editors wish to express their thanks for Alex Schwinger for his assistance in
the production of this volume, and the Excellence Cluster Topoi for publishing this
volume in the series Berlin Studies of the Ancient World. We also remember Norbert A.
Roughton, who contributed the foreword to this volume, but sadly passed away before
its publication. Roughton had participated in all four of the ‘Regensburg’ workshops
and will be sorely missed at future workshops.
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Norbert A. Roughton

Foreword: An Essay in Story Form,
Honoring Babylonian Astronomers and Connecting
Them with Scholars Who Study the Tablets Today

Once, long ago, in a land where the night sky blazed with stories, a young boy strug-
gled to learn the secrets of the stars. Oh, he knew Leo the lion and Pisces the fish and
that he had been born under the sign of Taurus the bull, but he wanted to know all the
signs and the stars and their travels.

His father and grandfather before him had written and studied the royal tablets
to find the rhythms in the movement of the skies. While other boys practiced archery
with their bows or played the game of stones, he worked – sometimes in the sand, some-
times on discarded bits of clay, sometimes on his practice tablet – drawing the lines that
made the names of the zodiac.

His own, Taurus, he already knew. His mother was Aquarius and
his father Leo. His brother’s Scorpio was going to take more practice.

“You will learn”, reassured his mother as she handed him a ball of dough to flatten
and mark his name before she baked it. “You need to be patient like the bull who knows
how to wait.”

“You’re too young to stay up late”, teased his older brother as he gathered his stylus
and clay to take to scribal school where he was learning to copy the stories sung by the
priests at the ritual feasts.

Later, when Father came home, he smiled and tousled the boy’s hair. At the meal
table he looked at the boy, saying, “Tonight you will go with me. If your grandfather’s
figures are correct, we will observe and record again the great wandering star’s travel
across the sky. It will be a good omen for the king.”
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̢̢̞̟̤̒̕ ̢̟̥̗̘̤̟̞

The boy returned his father’s smile with a grin and a smug look to his brother.
“Bring your cloak”, said his father, “along with your practice tablet and a keen eye. The
night will be cool and we may have to wait and watch until dawn”.

Thus it was that the boy began his studies beside his father, learning to copy what
others before had predicted, to record the positions of the moving stars in relation to the
stationary normal stars, and to figure when the patterns would occur again. Sometimes
he would start and have to smooth the clay to start again. His father checked his work
until the day his planet names were correct:

Jupiter Venus Mercury Saturn Mars

He was even able to accompany his father and others on a journey to Uruk to con-
sult with the astronomers there about a particularly puzzling star formation. They were
greeted with courtesy, offered cool refreshments, and escorted to the chambers where
the observers had laid out their tablets for consultation. For two days they pored over
the figures in question. On the next three nights they studied the sky: arguing about
possibilities, clarity of terms, and corrections in calculations.

When they had finally come to an agreement, the two groups exchanged copies of
the tablets that contained the work they had agreed upon. Father told him the informa-
tion would be transferred to almanacs – those collections of findings recorded on the
observational tablets which were accumulated and stored for reference to predict and
verify the positions of the planets during the months of the year.

Under the watchful eye of his father, the boy became skilled in using his stylus to
write and record the positions of the planets as they crossed the territories of the zodiac.

Venus in Pisces, First Visibility

Mars in Leo, Stationary

Jupiter in Aries, Opposition

Mercury in Gemini, Last Visibility

Mars Leo Reaches

ǟǠ



̢̧̢̖̟̟̔̕: ̞̑ ̣̣̩̑̕ ̙̞ ̢̣̤̟̩ ̢̖̟̝

With time, study, practice, and encouragement, as the boy grew he was able to join the
ranks of the scribes with the solemn tasks included in their mission as astronomers in
the king’s court. Their clay tablets, carefully recorded and stored, lay hidden in rubble
and dust for centuries waiting to reveal their findings to curious minds.

Today we wonder, observe, study, and wonder again – finding our own way back to
the early astronomers who also wondered and wrote their observations of the mysteries
of the sky. As we study the tablets, we reach across the years and meet the challenges
faced by our ancestors, marveling with them at the elegance of the universe.

Many thanks to Lis Brack-Bernsen for organizing the first Regensburg meeting of re-
searchers of Babylonian astronomical tablets. Lis led the way for us modern astronomers
to converse, comment, collaborate and continue to share our works with the ancient
cuneiform tablets.

The following tablet, LBAT 1591, is a brilliant example of a school tablet for early
scribes learning to record astronomical events (Fig. ǟ). A practice tablet for modern
scholars beginning to translate ancient texts. The cuneiform lines used in this essay were
taken from that tablet.
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Fig. ǟ LBAT ǟǣǧǟ.
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NORBERT A. ROUGHTON

passed away on Saturday, January ǟǢ, ǠǞǟǥ, at the
age of ǥǧ.
Roughton (B.S., M.S., John Carroll University;
Ph.D., Saint Louis University) was Professor Emeri-
tus of Physics and former Chairman of the Physics
Department at Regis University in Denver, CO.
At Regis University, his teaching covered Physics,
Astronomy, History of Science and Computer
Science. While his early scientific interests were
located in the area of Experimental Nuclear As-
trophysics, his research since the ǟǧǦǞs focused
on Babylonian Astronomical Texts, and he was a
regular participant in the Regensburg workshops
on Babylonian astronomy.
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Peter J. Huber

Dating by Month-Lengths Revisited

Summary

The chronological implications of the month-length evidence are re-examined on the ba-
sis of additional data, and newer astronomical theories and insights about the clock-time
correction. The month-length evidence available by ǠǞǟǡ is internally consistent, and it
confirms the former conclusions of ǟǧǦǠ, although with slightly lowered confidence. It fa-
vors the High and disfavors the Middle chronologies with confidence levels between 95%
and 99%. A Bayesian argument intimates that the High chronology (Ammis

˙
aduqa year 1 =

1702 BC) is roughly 25 times more probable than each of the other three main chronolo-
gies (1646, 1638, or 1582 BC). Independently, also the Ur III evidence points toward a High
chronology (Amar-Sin year 1 = 2094 BC).

Keywords: Near Eastern Chronology; month-length dating; Venus Tablet; Ammis
˙
aduqa in-

tercalations; clock-time correction.

Die chronologischen Implikationen der Belege für Monatslängen werden in diesem Bei-
trag anhand von zusätzlichem Material sowie von neueren astronomischen Theorien und
Erkenntnissen über die Zeitkorrektur nachgeprüft. Die ǠǞǟǡ zur Verfügung stehenden Bele-
ge für Monatslängen sind in sich stimmig und bestätigen die Schlussfolgerungen von ǟǧǦǠ,
wenn auch mit etwas niedrigerer Konfidenz. Bei einem Konfidenzniveau zwischen 95 %
und 99 % wird die lange Chronologie zu Ungunsten der mittleren Chronologien favorisiert.
Ein Bayessches Argument verdeutlicht, dass die lange Chronologie (Ammis

˙
aduqa Jahr 1 =

1702 v. Chr.) ungefähr Ǡǣ-mal wahrscheinlicher ist als jede der anderen drei Chronologien
(1646, 1638 oder 1582 v. Chr.). Davon unabhängig deuten auch die Ur-III-zeitlichen Belege
auf die lange Chronologie hin (Amar-Sin Jahr 1 = 2094 v. Chr.)

Keywords: Chronologie Altvorderasiens; Monatslängen; Venus-Tafel; Ammis
˙
aduqa-Inter-

kalation; Zeitkorrektur.

I appreciate the help obtained, directly or indirectly, from several colleagues through dis-
cussions and constructive criticism. Foremost among them I should mention Michael Roaf.
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̢̠̤̕̕ ̢̘̥̒̕

The suggestion to explore small prior probabilities for the additional intercalation (Sec-
tion ǣ.Ǡ.ǡ) is due to Jane Galbraith. Of course, all opinions and errors are my own.

ǟ Introduction

Month-length dating forms part of a tangled tale concerned with fixing the absolute
chronology of the ancient Near East. This tale is based on evidence from history (back-
reckoning using king lists, eponym lists, synchronisms, …), archaeology (stratigraphy,
pottery, …), and natural science (CǟǢ-dating, dendro-chronology, volcanic activity, …),
including astronomy (Venus Tablet, solar and lunar eclipses, month-lengths). The inter-
nal relative chronology of the period in question, which ranges from the late third to the
mid-second millennium, that is from the beginning of the Third Dynasty of Ur to the
end of the First Dynasty of Babylon, is now agreed upon to within very few years, but its
absolute position still is in doubt, and the disputes shift it forth and back over roughly
150 years. While the present paper concentrates on month-length dating, by necessity it
must touch on some of the other parts also.1

The last comprehensive treatment of the month-length evidence has been that by
Huber et al. in Astronomical Dating of Babylon I and Ur III (published in ǟǧǦǠ),2 followed
by Huber’s somewhat cursory re-takes and updates, spreading from ǟǧǦǥ to ǠǞǟǠ.3 These
papers had reached the conclusion that the month-length evidence overwhelmingly fa-
vored the High Venus chronology (HC, Ammis

˙
aduqa year 1= 1702 BC).

The current re-examination has been triggered by the recent flurry of activity con-
cerning the Old Assyrian eponym lists and the dendro-chronological dating of the Kül-
tepe site. This activity has collected strong, and as it seems, equally overwhelming ev-
idence in favor of the so-called Middle Venus chronologies. Barjamovic, Hertel, and
Larsen, in a comprehensive monograph published in ǠǞǟǠ, have settled on the tradi-
tional Middle Chronology (MC, Ammis

˙
aduqa year 1= 1646 BC).4 De Jong (in a paper

published in ǠǞǟǡ) and Nahm (in a paper published in ǠǞǟǢ) argue in favor of the Low
Middle Chronology (LMC, Ammis

˙
aduqa year 1= 1638 BC).5 Roaf (in a paper pub-

lished in ǠǞǟǠ) favors the Middle chronologies but advises caution.6

1 Note: The paper was written in early ǠǞǟǢ and is
based on materials available by ǠǞǟǡ.

2 Huber, Sachs, et al. ǟǧǦǠ.

3 Huber ǟǧǦǥ; Huber ǟǧǧǧ/ǠǞǞǞ; Huber ǠǞǞǞ; Huber
ǠǞǟǠ.

4 Barjamovic, Hertel, and Larsen ǠǞǟǠ.
5 De Jong ǠǞǟǡ; Nahm ǠǞǟǢ.
6 Roaf ǠǞǟǠ.
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̤̙̞̗̔̑ ̩̒ ̝̟̞̤̘-̜̞̗̤̘̣̕ ̢̦̙̣̙̤̔̕̕

In view of this seemingly irreconcilable conflict it is worthwhile – and perhaps even
mandatory – to re-examine the month-length evidence with the help of the currently
available material: (i) a moderately increased data base, (ii) more modern astronomical
theories, and (iii) a better insight into the clock-time correction. I shall concentrate on
the methodological aspects, in order to check and possibly identify weak spots of the
arguments.

New OB material has been supplied by Seth Richardson, new Drehem material by
Robert Whiting, and I am offering heartfelt thanks to both. With regard to method-
ological aspects it is relevant to note that (i) it does not suffice to scan the electronic
text catalogs for intercalations and day-ǡǞ dates – it is absolutely necessary to examine
the cuneiform sources in detail and to rely on the judgment of specialists, and (ii) that
more data do not necessarily imply improved chronological discrimination.

The Babylonian months are based on a lunar calendar, and their length alternates
irregularly between 29 and 30 days. The Babylonian day began at sunset, and the Babylo-
nian month began with the first visibility of the lunar crescent in the evening. According
to Babylonian custom, immediately after sunset of day 29, day 30 would begin in any
case. But if the moon became visible shortly thereafter, that is some 20–30 minutes after
sunset, the day would be denoted ‘returned’ (Akkadian turru) to become day 1 of the
following month (that is, the date would be changed retroactively, with the retroaction
spanning some 30 minutes). The preceding month thus would become hollow (29 days).
Otherwise the day would be ‘confirmed’ (kunnu) or ‘rendered complete’ (šullumu); see
the Akkadian dictionaries for these verbs, and in particular Neugebauer’s translation
and commentary of ACT No. 200 Sect. 15 for the technical use of the terms in mathe-
matical astronomy,7 and the letter BM 61719 (CT 22, No. 167), where the writer asks
for speedy information whether the day is kunnu or turru.

There are no intervals of 28 days between two calculated crescent sightings, and only
rare intervals of 31 days (about once in a century, and therefore statistically irrelevant).
It seems that a Babylonian day 30 always was followed by day 1, whether or not the
crescent was sighted. Since the synodic month has 29.53 days, one expects that 53% of
the months have 30 days and 47% 29 days. For randomly selected (wrong) chronologies
we therefore expect an agreement rate of 53% between calculated and observed ǡǞ-day
months, and 47% for Ǡǧ-day months. These rates for wrong chronologies are based solely
on astronomical theory. For a correct chronology the evidence from Neo-Babylonian
administrative texts (mostly texts dated on day 30) gives an agreement rate with modern
calculation of 67% (103 of 153 attestations). Actually, I find it more convenient to work
with expected miss rates; for ǡǞ-day months these are 47% for a wrong, 33% for a correct
chronology. If the data set contains also attestations of a few Ǡǧ-day months, the miss
rate for random wrong chronologies must be minimally adjusted upward.

7 O. E. Neugebauer ǟǧǣǣ, ǠǞǤ.
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̢̠̤̕̕ ̢̘̥̒̕

The figure of 33% applicable to a correct chronology is an empirical estimate and
as such is affected by a standard estimation error of about 3.8 percentage points. Apart
from this estimation error we do not know for certain whether the NB miss rate is appli-
cable also to OB and Ur III times. The data sets are not exactly comparable; NB and OB
evidence mostly is from texts dated on day 30, while a substantial fraction of the Ur III
evidence also derives from other, and possibly more reliable data (e.g. from regular de-
liveries: one sheep per day for the dogs of Gula).

The principal criticism voiced against month-length dating seems to be that it has
not been proved that the Neo-Babylonian 33% rate for correct chronologies is applicable
to Old-Babylonian and Ur III data. This criticism is beside the point. The central argu-
ment showing that a certain chronology is right (thereby simultaneously establishing
that its competitors are wrong) consists in showing that the miss count of that chronol-
ogy is significantly below that to be expected from a wrong chronology. This argument
relies only on the theoretically secure rate of 47%. If the miss rate is not significantly be-
low 47%, we simply shall be unable to reach a conclusion. The 33% rate is used only in
an ancillary fashion, namely to add evidence that a certain chronology is wrong. I hope
to clarify these issues in the discussion of the Ammis

˙
aduqa-Ammiditana data.

The Venus Tablet remains a central part of the evidence.8 The paper by Nahm (pub-
lished in ǠǞǟǢ) contains a most recent, comprehensive discussion.9 In view of the agree-
ment of the pattern of intercalations with that of contemporary Old Babylonian texts
we now know for sure that the first 17 years of the Venus Tablet correspond to the first
17 years of the Old Babylonian king Ammis

˙
aduqa (see Section ǟǞ.ǟ in the Appendix

of this article). Moreover, we now know that we have the complete pattern of interca-
lations for those 17 years (more precisely: we know all intercalations contained in the
interval from year 1 month VII to year 18 month VI), and in particular we know the
exact distances between the months of that interval. Note that we do not know for sure
whether year 1 is normal or whether it contains a second Ulūlu (VI2). This uncertainty
is of some relevance in connection with the Ammiditana date (see Section ǣ.Ǡ).

I believe that only the four main Venus chronologies (Ammis
˙
aduqa year 1= −1701,

−1645, −1637, −1581) have a realistic chance of being correct.10 We distinguish them as
High (HC), (High) Middle (MC), Low Middle (LMC), and Low Chronology (LC). This
assertion in part is based on the Venus Tablet evidence and in part on the historical time
window now considered to be feasible. Among the other chronologies that have been
entered into the discussion in recent years, the Gasche-Gurzadyan chronology (year 1=
−1549) is incompatible with the lunar calendar, and the Mebert chronology (year 1=

8 Reiner and Pingree ǟǧǥǣ.
9 Nahm ǠǞǟǢ.

10 I am using the astronomical year count, which
differs by one year from the historical count – in
the latter, the year 1 BC is followed by AD 1.
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−1573) relies on some demonstrably wrong assumptions about the arcus visionis values
and on some questionable textual emendations.11

Current evidence centered on dendro-chronology and Assyrian eponym lists points
toward the Low Middle chronology (year 1= −1637). On the other hand, for the mid-
dle two chronologies the Venus phenomena show statistically significant deviations of
±2 days against calculation, on a 1% significance level. In particular, for the Low Middle
chronology and all four events the observations on average are about 2 days later than cal-
culated, while for the High Middle chronology they are correspondingly earlier.12 This
holds if the Old Babylonian observing and recording practices were basically the same
as the Late Babylonian ones. We do not know for sure how the Babylonian astronomers
dealt with adverse weather conditions. Ordinarily, the LB observers inserted educated
guesses for absent observations, possibly based on observations made one Venus period
(8 years) earlier, with the remark ‘not observed’ (NU PAP). The OB observers might have
used a more naïve approach, possibly causing a systematic shift. Werner Nahm hypo-
thetically suggests that they might have written down the first date on which they could
confirm that Venus had entered a new phase, either visibility or invisibility.13 If so, bad
weather would delay the observed phenomena, but his suggestion does not convince
me. An even more simple-minded approach based on actually observed first and last vis-
ibilities seems to me at least as plausible. With this approach, bad weather would have
symmetric effects, on average mutually canceling each other: it would not only delay
first visibility, but also lead to an earlier begin of invisibility. I shall keep all four main
chronologies as possibilities, since – as always with delicate data analytic arguments –
there is a non-negligible residual risk of error. But in my opinion it is small enough to
cast serious doubts on the middle chronologies.

Ǡ Calculation of crescents

Theoretical crescent visibility shall be determined according to a recipe described by
P. V. Neugebauer.14 The position of the moon is calculated at the time of sunset or sun-
rise (more precisely: when the center of the sun is in the mathematical horizon), ig-
noring parallax and refraction. For these calculations I used the programs by Chapront-
Touzé and Chapront (published in ǟǧǧǟ),15 but with improved values for the clock-time
correction ΔT and the lunar orbital acceleration.

11 Gasche et al. ǟǧǧǦ; Mebert ǠǞǟǞ; Huber ǠǞǞǞ; Hu-
ber ǠǞǟǟ.

12 See the row with the medians in Tab. Ǡ.Ǡ of Huber
ǠǞǞǞ.

13 Nahm ǠǞǟǢ.
14 P. V. Neugebauer ǟǧǠǧ.
15 Chapront-Touzé and Chapront ǟǧǧǟ.
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The lunar crescent then is supposed to be visible shortly after sunset if the altitudehmoon of the moon at sunset exceeds a certain value h (the thin lunar crescent is not
visible at the moment of sunset or sunrise itself). The critical value of h depends on the
difference Δ in azimuth between sun and moon and h has been determined empirically.
Thus the crescent is assumed to become visible on the first evening for which the altitude
difference

Δh = hmoon − h
is greater or equal zero (and to become invisible on the first morning for which this
difference is less or equal zero). The tables for the critical value h given by P. V. Neuge-
bauer,16 and shortly before by Langdon, Fotheringham, and Schoch,17 differ slightly.
Both tables go back to Carl Schoch. Identifying the tables by the initials of the authors,
I am following PVN, while Parker and Dubberstein18 followed the earlier LFS version.
See Tab. ǟ and Fig. ǟ.

This method for calculating crescent visibility admittedly is dated. Its advantage is
that it has been extensively tested against antique data (see the next section). There are
more modern approaches by Schaefer and others, but in the absence of testing it is not
known how well they perform with regard to observations made before the industrial
revolution. Of course, the critical altitude h is not meant as a sharp limit, and the fol-
lowing section gives empirical evidence for the size of its uncertainty range.

In ǟǧǦǠ I calculated all 33 000 lunar crescents for Babylon (44.5 E and 32.5 N) be-
tween the years −2456 and +212. The following statistics may be of some interest. I am
quoting the results of ǟǧǦǠ; more modern programs and different choices of the clock-
time correctionΔT cause only negligible minor variations. There were no ǠǦ-day months
at all, but there were 20 months with 31 days. We believe that the Babylonian months
never exceeded 30 days (even if the crescent did not appear), and therefore, a ǡǟst day
should be carried over to the next month. After carrying over the additional days of the
ǡǟ-day months, there were 15 491 Ǡǧ-day months (46.9%) and 17 509 ǡǞ-day months
(53.1%).

Note that the difference in longitude between sun and moon on average changes
by 12◦ in 24 hours. However, first visibility of the crescent depends not only on the
difference in longitude, but also on lunar latitude. On the day before theoretical first
visibility, Δh can be as low as −14.3◦, and on the day of first visibility, it can be as high
as 14.4◦. Between these two days, the value of Δh increases by at least 6.2◦ and by at most
14.5◦.

16 P. V. Neugebauer ǟǧǠǧ, Tab. E Ǡǟ.
17 Langdon, Fotheringham, and Schoch ǟǧǠǦ, Tab. K.

18 Parker and Dubberstein ǟǧǣǤ.
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The Ǡǧ- and ǡǞ-day months follow each other in a quite irregular and not easily
predictable sequence, but which is not really random (i.e. there are discernible differ-
ences between this sequence and one obtained by tossing a biased coin). I checked it for

|Δ| h
PVN LFS

0 10.4◦ 10.7◦

1 10.4 10.7

2 10.3 10.6

3 10.2 10.5

4 10.1 10.4

5 10.0 10.3

6 9.8 10.1

7 9.7 10.0

8 9.5 9.8

9 9.4 9.6

10 9.3 9.4

11 9.1 9.1

12 8.9 8.8

13 8.6 8.4

14 8.3 8.0

15 8.0 7.6

16 7.7 7.3

17 7.4 7.0

18 7.0 6.7

19 6.6 6.3

20 6.2

21 5.7

22 5.2

23 4.8

Tab. ǟ Critical altitudes h for
crescent visibility, in dependence
of the azimuth difference |Δ|. The
values are those of P. V. Neuge-
bauer (PVN), and of Langdon,
Fotheringham, and Schoch (LFS),
respectively.

Ǡǣ



̢̠̤̕̕ ̢̘̥̒̕
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Fig. ǟ Crescent visibility. Shown are the theoretical visibility curve of Tab. ǟ, PVN (solid), the gray zone (±1◦),
the sun (at the coordinate origin), and the thin lunar crescent (with the earth light). The figure is to scale.

periodicities by comparing month-lengths spaced up to 3000 months apart. The most
pronounced period is 669 months or 54 years: month-lengths spaced 669 months apart
agree in 81% of the cases. Note that 669 synodic months, or 54 years, is a well-known
eclipse period (the so-called exeligmos). In particular, there are fewer and shorter runs
(sequences of consecutive months of equal length) than in a truly random sequence.
I found 410 runs of three consecutive Ǡǧ-day months, and 100 runs of five consecutive
ǡǞ-day months; longer runs did not occur.

ǡ The Late Babylonian evidence: astronomical texts

In preparation to the publication of Astronomical Dating of Babylon I and Ur III in ǟǧǦǠ,19

I had collected 602 lunar crescents in Late Babylonian observational astronomical texts.
These are observations of the crescent and as a rule are accompanied by a measured
time interval between sunset and moonset. Most of the texts are dated between 500 and

19 Huber, Sachs, et al. ǟǧǦǠ.
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150 BC. I had excluded calculated crescent data, that is crescents explicitly designated
as ‘not observed’ (NU PAP), therefore the agreement of that data base with modern cal-
culation may be better than the agreement to be expected from genuine observations.
On the other hand, one should be aware that the ancient astronomers occasionally may
have substituted educated guesses (based on observations shortly before or after the crit-
ical evening) or predictions when observational conditions were poor, without always
stating the fact.

In the time when those astronomical texts were written the Babylonians had fairly
accurate prediction methods. Between 641 and 591 BC they had developed methods for
predicting the so-called Lunar Six (time differences between the rising and setting of
sun and moon, near new and full moons).20 Their methods for predicting the Lunar
Six and the beginning of the month were based on observations made one Saros cycle,
or 18 years, earlier; they have been elucidated by Brack-Bernsen.21

This observational material then was compared with modern calculations based
on the PVN values of Tab. ǟ; it was not deemed extensive enough to model seasonal
dependencies. Among the 602 crescents, there are 34, or 5.6%, discrepancies between
observation and calculation. Of those, 30 correspond to marginal visibility conditions
with |Δh| < 1.0◦, that is to cases where the altitude of the moon was within±1◦ of the
theoretical curve deciding visibility, see Fig. ǟ. Among the remaining four observations,
one is a clear gross error, and two come from the same, poorly preserved tablet. This
residual error rate is remarkably small. Note that according to modern experience, when
data are recorded by hand, in the absence of proof reading gross error rates in the range
between 1% and 10% are quite common.22 I therefore assume that there was careful
proof reading. Given the low residual error rate, observations with |Δh| ⩾ 1.0◦, rather
than being genuine observations that are less accurate than usual, just as likely either
are gross scribal errors, or evidence for wrong modern dating of the tablet.

If we disregard gross errors, we thus have 598 observations, among which 30, or
5.0%, disagree with modern calculation. This disagreement rate is a statistical estimate
and as such, assuming an underlying binomial distribution, is affected by a standard
error of 0.9% percentage points. It is advisable to keep this statistical uncertainty in
mind – with a similar but independent data set we might just as well have obtained
a miss rate near 4% or 6% – but for the subsequent order-of-magnitude calculations we
shall operate with 5%. Since a month-length depends on two crescents, the 5% miss rate
for crescents translates into an approximate miss rate of 10% for month-lengths.

The following Tab. Ǡ gives the empirical distribution of sighted and not sighted
crescents with calculated |Δh| < 1.0.

20 Huber and Steele ǠǞǞǥ.
21 Brack-Bernsen ǠǞǟǟ.

22 See Hampel et al. ǟǧǦǤ, Ǡǣ–ǠǦ.
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not sighted Δh sighted

44

××××××××× −0.9

15

××××× −0.8

××× −0.7 ×××

××× −0.6 ××

××××××× −0.5 ×

×××××× −0.4 ×××

×××× −0.3

××× −0.2 ×

×××× −0.1 ××××

−0.0 ×

15

0.0 ××

38

× 0.1 ×××××××

× 0.2 ×

× 0.3 ×××

×× 0.4 ××××××

××× 0.5 ×××××

××× 0.6 ××

× 0.7 ×××

×× 0.8 ××

× 0.9 ×××××××

Tab. Ǡ Sighted and not sighted
crescents in the Late Babylonian
observational texts with the cal-
culated value of |Δh| < 1.0 (from
Huber, Sachs, et al. ǟǧǦǠ, Ǡǥ).

Based on this table I had tentatively proposed a probability model that disregarded gross
errors but otherwise represented the observational astronomical data fairly well, namely:

– if Δh < −1, the crescent is never seen;
– if −1 ⩽ Δh ⩽ 1, the crescent is seen with probability 1+Δh

2 ;
– if Δh > 1, the crescent is always seen.

Thus, near Δh = 0 the chance of seeing the crescent is roughly 50%, and for Δh = −0.8
the probability of sighting the crescent drops to 10%. By averaging over the intervals
we obtain that for −1 ⩽ Δh ⩽ 0 the crescent is not sighted with probability 0.75 and
sighted with probability 0.25, while for 0 ⩽ Δh ⩽ 1 it is not sighted with probabil-
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ity 0.25 and sighted with probability 0.75. These theoretical 3 : 1 ratios are close to the
empirical ratios 44 : 15 and 15 : 38 of Tab. Ǡ.

Note that for genuine observations the situation is not symmetric: if a text claims
that the crescent had been seen, but calculation gives a negative Δh ⩽ −1.0◦, we are
practically guaranteed to have a gross scribal error or a wrong date. But if the crescent
had not been seen with Δh ⩾ 1.0◦, it is possible that the sighting had failed because of
poor atmospheric conditions. However, this asymmetry does not manifest itself in the
Late Babylonian data and therefore was not modeled.

On the basis of a long sequence of 33 000 calculated crescents (with Δh values
rounded to the nearest multiple of 0.1◦), the above probability model yields that the
crescents would be observed one day early or late in 2.3% of the cases, respectively, re-
sulting in a calculated miss rate of 4.6%. This is well within the statistical uncertainty of
the observed miss rate, but for the model calculations of Sections ǥ and Ǧ, I preferred to
increase the width ±d of the gray zone from ±1.0◦ to ±1.1◦, in order to obtain a miss
rate of 5.1%, closer to the observed value.

Ǣ The Neo-Babylonian evidence: administrative texts

Non-astronomical texts – mostly administrative texts from between 650 and 450 BC,
dated on day 30, where such a date would appear to imply that the month had 30 days
– have a substantially higher disagreement rate against calculation. In ǟǧǦǠ we found
153 suitable texts, with a disagreement rate of 50/153= 32.7% for month-lengths.23 This
translates into about 17% with regard to crescents, and there are about 8% cases with
|Δh| ⩾ 1.0◦.24 It is difficult to separate the causes of these discrepancies into careless
dating, less reliable observations made by non-astronomers, and gross scribal errors. I
now repeated the calculations with newer programs and the best currently available ΔT -
values for the Neo- and Late-Babylonian period.25 The results were practically identical.

The correct chronology with 50 misses does not give the best possible fit. Among
20 000 alignments of the 153 observed month-lengths along a calculated sequence there
were 16, or 0.08% alignments with 50 or fewer misses. The best fit had 46 misses, and
fits with 50 and 49 misses were found 669 months, or 54 years, before and after the true
date, respectively (remember the 669 months lunar period!). This means that a randomly
chosen (wrong) alignment has a chance of 0.08% of hitting an equally good or better
agreement than the true one. And there are good chances to find an equally good fit
exactly 669 months or 54 years before or after the true one.

23 Huber, Sachs, et al. ǟǧǦǠ, ǠǦ–Ǡǧ.
24 Huber, Sachs, et al. ǟǧǦǠ, ǠǦ–Ǡǧ.

25 The STǦǠf formula for ΔT of Huber and De Meis
ǠǞǞǢ, Ǡǣ.
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Reassuringly, we can conclude that the agreement of the recorded ǡǞ-day months
with the calculated ǡǞ-day months is significantly better for the true chronology than for
a wrong chronology. However, even with 153 recorded month-lengths the agreement
ordinarily is not good enough to permit independent dating in the absence of other
evidence, that is, unless we can narrow down the candidate chronologies to a few precise
years. A detailed quantitative discussion is required.

Theoretical arguments involving the miss rates of wrong alignments are based on
astronomical theory, namely on the 29.53 days length of the synodic month and the
resulting miss rate of 47% for randomly aligned ǡǞ-day months. The binomial distribu-
tion gives a good approximation to the distribution of empirically observed miss rates,
see Fig. Ǡ.

Arguments involving the miss rate of the correct chronology are more delicate, quite
apart from the question whether the miss rates for NB and OB times were the same. For
true alignments this miss rate also follows a binomial distribution, but with a lower value
of p, see Fig. ǥ of Section Ǧ. For arguments relying on the miss rates for true alignments
one should keep in mind that the disagreement rate of p = 50/153 = 32.7% between
observed and calculated month-lengths is a mere estimate, and as such is affected by a
standard error of

√p(1−p)/n, or about ǡ.Ǧ percentage points.
Since the observed miss count is a random quantity, some luck is involved. Let us

fix the idea by arbitrarily assuming that the true disagreement rate is 32.7%, and that
we are trying to find a date on the basis of an independent new sample of 153 month-
lengths. Note that this is a much larger sample than we can hope for in the case of
Ammis

˙
aduqa+Ammiditana. Then for a correct alignment the chances are 27% that

the observed miss count is less or equal 46, and also 27% that it is greater or equal 54.
With a correct alignment and good luck, we perhaps might have obtained 46 misses
and a miss rate of 30.0%, with bad luck perhaps 54 misses and a miss rate of 35.3%.
With a wrong chronology the expected number of misses is 0.47×153 = 72, and the
binomial probability of obtaining 46 or fewer misses is 0.0000145, and of obtaining 54
or fewer misses is 0.00224.

Assume now that we desire to fix the true chronology with an error probability
of 1%. Then the probability that the best of 690 random trials with wrong alignments
achieves 46 or fewer misses is approximately 1% (≈ 690 × 0.0000145). In such a lucky
case, picking the correct date based solely on month-lengths is eminently feasible – in a
line-up of 690 candidates we pick the true one with 99% chance. On the other hand, if
we are unlucky, the probability that the best of 4 random trials with wrong alignments
achieves 54 or fewer misses is about 1% (≈ 4× 0.00224), which would be just sufficient
to pick the correct chronology in an Ammis

˙
aduqa-like case with 99% chance in a line-up

of four precisely fixed candidate chronologies.
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Binomial and empirical, n=153, p=0.472
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Fig. Ǡ Comparison between the binomial distribution (n= 153, p= 0.472, blue) and the empirical frequencies
obtained from ǠǞ ǞǞǞ alignments of the Late Babylonian data (red). (The LB data contain 149 ǡǞ-day months and
4 Ǡǧ-day months, and the p of the binomial distribution was adjusted accordingly from 0.47 to 0.472.)

A detailed discussion of the NB material follows. The 153 texts contain 4 attested Ǡǧ-
day months, 3 of which agree with calculation, and one calculates as 30 days, possibly
shortened by marginal calculated visibility (Δh = 0.2◦) at the beginning of the month.
Tab. ǡ lists the results of a comparison of the remaining 49 months that calculate as
having 29 days but where the texts have a day 30. This is an extract from Astronomical
Dating of Babylon I and Ur III,26 but re-calculated with newer programs.

We note that of those 49 months 14 have marginal visibilities (−1.1 ⩽ Δh ⩽ 0) at
the beginning of the month, and 14 have marginal visibilities at the end of the month
(0 ⩽ Δh ⩽ 1.1). The former may lengthen the observed month at the beginning, the
latter at the end. One month has marginal conditions both at the beginning and the
end. For the remaining 22 months the mismatch to calculation cannot be explained
by marginal visibility; for them, we have 1.6 ⩽ Δh ⩽ 6.8 at the end of the month.
Incidentally, the big list of 33 000 calculated crescents shows that at the end of calculated
Ǡǧ-day months Δh ranges from 0 to 10.9.

26 Huber, Sachs, et al. ǟǧǦǠ, ǣǟ–ǣǣ.
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Syzygy
Number

begin of month end of month

Δh before
1st visibility

Δh at 1st
visibility

Δh before
1st visibility

Δh at 1st
visibility

5537 −6.2 3.6 −9.1 .0

5925 −4.0 6.8 −10.9 .1

5827 −4.2 6.7 −11.2 .1

5600 −.8 7.7 −7.4 .2

5610 −5.6 4.7 −7.8 .2

5917 −7.0 5.7 −10.6 .3

5687 −3.9 6.0 −9.1 .3

5315 −6.1 3.6 −8.6 .4

5722 −6.5 6.1 −10.4 .7

5854 −3.8 7.2 −9.6 .8

11235 −1.4 9.4 −8.6 .9

9035 −3.8 6.3 −8.1 .9

5597 −7.0 4.9 −8.4 .9

6219 −3.4 5.5 −7.8 1.0

5683 −.6 10.3 −7.3 1.5

4726 −3.1 8.1 −10.0 1.6

5781 −2.9 9.5 −9.1 1.7

5363 −1.2 8.2 −5.4 2.0

5766 −5.1 8.1 −10.6 2.0

5045 −1.0 8.3 −7.0 2.2

5446 −4.3 7.9 −8.4 2.2

5748 −5.3 5.9 −8.1 2.7

5570 −5.2 8.5 −10.0 2.8

5774 −1.8 7.6 −6.6 3.1

5802 −4.3 8.1 −9.9 3.4

5530 −1.4 10.7 −8.2 3.5

5526 −4.3 7.0 −7.1 3.6

(continued on next page)
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(continued from previous page)

Syzygy
Number

begin of month end of month

Δh before
1st visibility

Δh at 1st
visibility

Δh before
1st visibility

Δh at 1st
visibility

5877 −4.7 9.0 −9.5 3.6

5678 −4.8 8.7 −9.5 4.3

5327 −.2 9.3 −4.3 4.4

6001 −4.9 9.3 −9.6 4.4

4996 −5.4 7.8 −9.1 4.7

5850 −2.2 10.5 −7.2 5.0

5334 −1.5 11.6 −7.3 5.1

5890 −4.4 9.6 −8.1 5.3

6377 −.0 12.7 −6.3 5.3

5405 −.6 11.6 −6.1 5.4

5329 −.0 10.3 −5.4 5.5

5499 −2.0 11.7 −6.7 5.5

5903 −4.0 9.9 −7.0 6.1

6194 −2.5 9.6 −5.3 6.4

5050 −1.3 11.8 −6.4 6.8

5654 −.2 13.3 −5.5 7.4

5863 −.8 13.0 −5.5 7.7

5899 −.2 12.1 −4.2 8.5

5008 −1.1 11.6 −4.5 8.7

5677 −.3 12.5 −4.8 8.7

6392 −.1 13.7 −3.5 9.0

5442 −.8 13.2 −4.8 9.5

Tab. ǡ Neo-Babylonian data:
49 texts dated on day 30, whereas
calculation indicates a Ǡǧ-day
month. The table is sorted accord-
ing to the calculated Δh at 1st
visibility at the end of the month.
Where a mismatch cannot be ex-
plained as a gray-zone effect, theΔh value is shaded.

I am not sure how Tab. ǡ is to be interpreted. Clearly, there is a crowding of values in
the marginal visibility zones, both at the beginning and the end of the month. For the
remaining 22 months, or 45% of the total, at the end of the month Δh is fairly evenly
distributed over the range between 1.6 and 6.8, and thus the mismatch cannot simply
be explained by expanding the marginal visibility zones. I believe the most plausible
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suggestion is that between 40% and 50% of the day-ǡǞ dates are ‘overhang’ dates, on
which a scribe wrote day 30 instead of day 1 of the following month. In these cases
the following day would be day 2 of the new month. I shall elaborate on this idea in
Section ǥ.

ǣ On the discriminatory power of month-lengths

I shall concentrate on methodological aspects, but shall illustrate them by discussing in
detail two concrete data collections that involve crucial aspects and difficulties: month-
lengths (ǟ) from the reign of Ammis

˙
aduqa, and (Ǡ) from the reign of Ammiditana. An

early draft had contained also a detailed discussion of (ǡ) the Hammurabi-Samsuiluna
and (Ǣ) the Ur III evidence, both being less conclusive, but for reasons of space I now
give only brief summaries. To avoid over-burdening the discussion, I shall relegate most
technical details to Sections ǥ, Ǧ, and ǧ below, and to Section ǟǞ, the Appendix listing
the data collections.

A perennial methodological problem is that our pool of month-length data may
be too small to guarantee a decision. Even in the absence of grosser errors, such as er-
roneous intercalations, the unavoidable problem is the randomness of the miss counts.
With some luck, the correct chronology may give a lower than expected miss count and
force a decision. But if it accidentally gives a high miss count, the situation may remain
undecided. With the miss counts of wrong chronologies opposite problems apply. More
new data will not necessarily sharpen the decision – extreme counts will tend to regress
toward the average (Galton’s law of ‘regression to mediocrity’). For example, in the case
of Ammis

˙
aduqa to be discussed in Section ǣ.ǟ, addition of 5 more month-lengths re-

sulted in a poorer separation between the putative right and wrong alignments. In or-
der to illustrate the intrinsic variability of small sample statistics – and to raise a warning
signal against the temptation of over-interpretation – I shall present the analysis of the
Ammis

˙
aduqa data both in terms of the smaller earlier and the increased later sets. Note

that in critical cases elimination of a single mismatch by a minute change of ΔT can
dramatically lower the P-values (minimum rejection levels), see Section ǣ.Ǡ.ǟ.

Repeatedly, doubts have been raised whether the Old Babylonian month-lengths,
i.e. month-lengths derived from texts dated on day 30, obey laws comparable to those of
the Neo-Babylonian ones, in particular whether the NB miss rate of 33% is applicable.
If it comes to the worst, the miss counts for the correct OB chronology might be no
better than for wrong ones, and then the month-lengths would be useless for dating
purposes. But at least in principle – that is, if the sample size is large enough – the
month-length data can be used to settle this question in a methodological clean fashion,
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namely by testing whether one of the four main Venus chronologies gives a better fit than
the best of four random wrong chronologies. Technically, this means that we should
show by a statistical test that the best of the four miss counts is significantly better than
the best of four random draws from a binomial distribution corresponding to wrong
chronologies. If successful, this test (which is based only on the theoretically secure ratep=0.47) would not only establish that one of the four chronologies is correct. It would
also imply correctness of the singled-out best chronology and wrongness of the other
three, and that the miss rate for a correct chronology – while not necessarily equal to
the NB value – is well below that for a wrong chronology also for OB data.

But what sample size would we need? The Ammis
˙
aduqa sample sizes of 27 or 32

are not good enough. Assuming that the miss rate for correct chronologies is close to
the NB value of 33%, I have estimated (with the help of some rough order-of-magnitude
calculations with the binomial distribution) that one would need 60 or more month-
lengths for such a test to have a fair chance of being successful. Actually, with some
luck we shall squeeze by with a total of 49 data by combining the Ammis

˙
aduqa and

Ammiditana samples in Section ǣ.Ǡ.ǟ.

ǣ.ǟ Case ǟ: Ammis
˙
aduqa

This subsection is concerned with the question whether and when the best fitting chronol-
ogy can be declared being the correct chronology. It also illustrates that more data do
not necessarily improve the discriminatory power.

In the case of the reign of Ammis
˙
aduqa we have four distinct, precisely fixed main

chronological possibilities: Ammis
˙
aduqa year 1= −1701, −1645, −1637, or −1581. For

each of these four possibilities the syzygy numbers of the months from year 1 month VII
to year 18 month VI are astronomically fixed by the Venus data. If Ammis

˙
aduqa year 1

is a normal year, they imply that month I of that year has the syzygy numbers −8666,
−7974, −7875, or −7183, respectively.27

I first shall discuss the set of 27 day-ǡǞ dates available by ǠǞǟǞ. Fig. ǡ plots the bi-
nomial distributions corresponding to p= 0.33 on the left hand side (the miss rate cor-
responding to the Neo-Babylonian control material for a correct chronology) and top= 0.47 on the right hand side (the theoretical rate for random wrong chronologies).
There is considerable overlap between the two distributions. For a correct chronology
we expect a miss count of 8.9, with a standard deviation of

√n p (1 − p) = 2.4. For
a wrong chronology the expected count is 12.7, and for the best of four wrong chronolo-
gies the expected count is 10.0.

27 These numbers continue the syzygy count of
Goldstine ǟǧǥǡ backward to the Ǡnd and ǡrd
millennium.
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Binomial (p=0.33, p=0.47), n=27

nmiss
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-1581

Fig. ǡ Ammis
˙
aduqa data (set available in ǠǞǟǞ). Binomial distributions for p= 0.33 and p= 0.47, n= 27. The

vertical lines indicate the number of misses obtained for the Ǣ main chronologies with the Ammis
˙
aduqa data:

−1701: 8, −1645: 16, −1637: 15, −1581: 13.

For the four main chronologies we obtain miss counts of 8, 16, 15, and 13 respectively,
see Fig. ǡ. We expect that one of the four main chronologies is correct and is drawn from
the left-hand distribution, while the other three are wrong and are drawn from the right-
hand distribution. The figure clearly is consonant with this assumption; it suggests that
−1701 is correct, and that the other three are unlikely in different degrees. Actually, the
miss count for −1701 is below the expected value for a correct chronology by one unit,
and the other three counts are all above the expected value for a wrong chronology.

While this data set clearly favors the −1701 chronology, the sample size is not large
enough to force a decision in its favor. The probability that a random wrong chronology
yields 8 or fewer misses is 0.052. But since we have picked the −1701 chronology not for
extraneous reasons, but rather because it was the best of four, we should consider the
probability that the best of four random wrong chronologies yields 8 or fewer misses; this
probability is 1 − (1 − 0.052)4 = 0.19.
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Through a Bayesian approach we can quantify the intuitive impression that −1701
is best and −1645 worst by assigning equal prior probabilities to the four chronologies.
Then, their posterior probabilities are proportional to

( p (1 − q)
(1 − p) q

)k

where p = 0.33, q = 0.47, and k is the number of misses. For the ǠǞǟǞ data set they
calculate as:

−1701: 0.927, −1645: 0.008, −1637: 0.015, −1581: 0.049.

Note that if all k are increased by the same constant, the posterior probabilities stay the
same – this means that the Bayesian approach ignores the absolute quality of the four fits
and is in particular unable to tell you whether or not all four are wrong. A disadvantage
of all Bayesian approaches is that they have to rely on the Neo-Babylonian value of p.

By ǠǞǟǡ, 5 more day-ǡǞ dates had become available. The result is depicted in Fig. Ǣ.
The −1701 chronology still is ahead, but its miss count of 12 now exceeds the expected
value of 10.6 for a correct chronology by one unit, while the other three are at or above
the expected value of 15.0 for a wrong chronology.

The ǠǞǟǡ Ammis
˙
aduqa data set is less able to assert correctness of the −1701 chronol-

ogy than the ǠǞǟǞ set. While with the earlier set the lowest miss count was one unit
below the expected value for a correct chronology, with the later set it is one unit above
the expected value, and the probability that a random wrong chronology yields 12 or
fewer misses is 0.18. The miss count of 12 of the High Chronology lies between the ex-
pected miss count for a correct chronology (10.6) and the count expected for the best of
four wrong chronologies (12.2). All these number lie well within statistical variability;
note that the standard deviation

√n p (1 − p) = 2.7 of the miss count for the cor-
rect chronology exceeds the difference between the last two numbers. (By the way, the
standard deviation of the miss count of the best of four wrong chronologies is 2.0.)

The evidence does not suffice to establish correctness of the High chronology, but if
the miss rate of 0.33 of the NB data is even approximately applicable, we can confidently
(with better than 99% confidence) reject correctness of the traditional −1645 Middle
chronology: the P-values are 0.45% for the ǠǞǟǞ set and 0.19% for the ǠǞǟǡ set.

For the ǠǞǟǡ set the posterior probabilities calculate as

−1701: 0.736, −1645: 0.012, −1637: 0.126, −1581: 0.126.

We summarize: the Ammis
˙
aduqa month-length evidence points in favor of the High

chronology and disfavors the −1645 chronology.
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Binomial (p=0.33, p=0.47), n=32
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Fig. Ǣ Ammis
˙
aduqa data (set available in ǠǞǟǡ). Binomial distributions for p= 0.33 and p= 0.47, n= 32. The

vertical lines indicate the number of misses obtained for the Ǣ main chronologies with the Ammis
˙
aduqa data:

−1701: 12, −1645: 19, −1637: 15, −1581: 15.

ǣ.Ǡ Case Ǡ: Ammiditana

In the case of Ammiditana, the king of Babylon immediately before Ammis
˙
aduqa, we

have 13 (set available since ǟǧǦǠ), or 17 (set available in ǠǞǟǡ) usable attestations of ǡǞ-
day dates (from Ammiditana years 24 to 36). The problem here is that the positions of
the intercalary months are not fixed by Venus observations as in the case of Ammis

˙
aduqa.

Specifically, the question is whether the Ammiditana segment joins snugly in front of
Ammis

˙
aduqa. Note that for the 7 years between Ammiditana 34 and Ammis

˙
aduqa 3

only a single intercalation is attested (see Section ǟǞ.Ǡ in the Appendix of this article).
So we should consider the possibility that there is an unattested intercalation near the
boundary (for example a XII2 in Ammiditana year 36, or a VI2 in Ammis

˙
aduqa year 1;

these two choices shift all currently attested Ammiditana month-lengths by one month,
but do not interfere with their relative distances). I think it is advisable, if not mandatory,
to take the uncertainty into account and to consider the possibility of an additional
intercalation. In Tabs. Ǣ–ǣ, the results are identified by ‘+0’ without, by ‘+1’ with such
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+0 +0 +1 +1 min min

Ammis
˙
aduqa

year 1
Syz.no. of
year 1

As
˙

Ad Ad+As
˙

Ad Ad+As
˙

Ad Ad+As
˙

No. of months 27 13 40 13 40 13 40

High −1701 −8666 8 8 16 2 10 2 10

High Middle −1645 −7974 16 5 21 8 24 5 21

Low Middle −1637 −7875 15 8 23 11 26 8 23

Low −1581 −7183 13 9 22 5 18 5 18

Tab. Ǣ Counts of misses for Ammis
˙
aduqa and Ammiditana (sets available in ǠǞǟǞ).

an additional intercalation, and ‘min’ gives the lower of the two counts. With ‘+1’ the
Ammiditana block as a whole is shifted one month.

When considered by themselves, the Ammiditana data lead to similar conclusions
as the Ammis

˙
aduqa data: both favor the High chronology, see Tabs. Ǣ–ǣ, and compare

Figs. ǡ–Ǣ with Fig. ǣ. We may treat the two data sets as two independent witnesses.
They are concordant, but not quite conclusive when taken separately. There are more
promising approaches, namely by combining the two sets. I shall discuss three possible
approaches.

Firstly, we may form a working hypothesis on the basis of one set and then test it on
the basis of the other. Or secondly, we can pool the data, forget about the evidence of the
components and proceed on the basis of the joined set. A third possibility is to combine
the evidence from the different sets by Bayesian methods. To some extent the choice of
method is a matter of taste. Personally, I think that in our case the first approach, testing
a working hypothesis, is the cleanest (and clearest). Others might better like the third,
Bayesian approach.

The approaches are complementary. Statistical tests can assess absolute quality, but
have difficulties measuring relative merits, while with Bayesian approaches the opposite
applies. In our particular case the first approach is suitable for establishing correctness
of a chronology, the second for establishing wrongness of selected chronologies, and the
third for assigning relative probabilities.

From now on we shall concentrate on the ǠǞǟǡ data set. The joined Ad+As
˙

data
of Tab. ǣ suggest that in the +0 column all four alignments are wrong: none of the
counts is below the value 23.0 expected for a wrong chronology, and all exceed the
value 16.2 expected for a correct chronology by more than twice their own standard
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+0 +0 +1 +1 min min

Ammis
˙
aduqa

year 1
Syz.no. of
year 1

As
˙

Ad Ad+As
˙

Ad Ad+As
˙

Ad Ad+As
˙

No. of months 32 17 49 17 49 17 49

High −1701 −8666 12 11 23 3 15 3 15

High Middle −1645 −7974 19 6 25 10 29 6 25

Low Middle −1637 −7875 15 9 24 13 28 9 24

Low −1581 −7183 15 10 25 7 22 7 22

Expected
number of
misses
(± standard
deviation)

correct 10.6
±2.7

5.6
±1.9

16.2
±3.3

5.6
±1.9

16.2
±3.3

wrong 15.0
±2.8

8.0
±2.1

23.0
±3.5

8.0
±2.1

23.0
±3.5

best of 4 wrong 12.2
±2.0

5.9
±1.4

19.4
±2.4

5.9
±1.4

19.4
±2.4

Tab. ǣ Counts of misses for Ammis
˙
aduqa and Ammiditana (sets available in ǠǞǟǡ).

deviation of 3.3. Thus, either a snug joining of the two data sets (+0) is wrong, or all
four chronologies are wrong, or OB month-lengths are worthless for dating purposes.

On the other hand, in the +1 column the miss-counts match the assumption that
we have one correct and three wrong chronologies. The count (15) for the HC turns out
even better than what we would expect (16.2) for the correct chronology, and the counts
for the Middle chronologies are devastatingly poor.

If indeed one of the four chronologies is correct, as is generally assumed, and if
OB month-length data can provide valid evidence, a comparison between the +0 and
+1 columns thus furnishes strong arguments in favor of an additional intercalation, and
in favor of the High chronology, as well as against the Middle chronologies.

Fig. ǣ is analogous to Figs. ǡ–Ǣ. It plots the binomial distributions corresponding top = 0.33 (the miss rate corresponding to the Neo-Babylonian control material for a cor-
rect chronology) and to p = 0.47 (the theoretical rate for random wrong chronologies),
and in addition it also shows the distribution of the counts for the better of two random
draws from the right hand distribution. Correspondingly, the vertical lines indicate the
better of the two Ammiditana counts (without and with the additional intercalation).
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Binomial (p=0.33, p=0.47 (best of 2), p=0.47), n=17

nmiss
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Fig. ǣ Ammiditana data (set available in ǠǞǟǡ), n = 17. Leftmost: binomial distribution for p = 0.33 (correct
chronology); rightmost: for p = 0.47 (wrong chronology). In between the two, also the distribution of the best
of two wrong chronologies is shown. The vertical lines indicate the number of misses obtained for the Ǣ main
chronologies with the Ammiditana data. The lines correspond to the numbers obtained for the best of two fits
(without or with the additional intercalation): −1701: 3, −1645: 6, −1637: 9, −1581: 7.

Back in ǟǧǦǠ, for the −1701 chronology and the 13 month-lengths then available I had
obtained a single miss when assuming an additional intercalation. For the same data
the newer programs gave two misses. It turns out that the uncertainty of ΔT is such
that for one of the Ammiditana month-lengths the decision between 29 and 30 days is
ambiguous. The newer programs, which allow to vary ΔT , show not only that with the
default ΔT the miss counts correspond to a local maximum for both Ammis

˙
aduqa and

Ammiditana, but also that if ΔT is lowered by merely 3 minutes (that is, if c is changed
from 32.50 to 32.35), the Ammiditana miss counts become 1 for the ǟǧǦǠ/ǠǞǟǞ set, 2 for
the ǠǞǟǡ set. See Section ǧ and Figs. Ǧ, ǧ, ǟǞ, ǟǟ, and ǟǠ.

ǣ.Ǡ.ǟ Ammis
˙
aduqa results used as a working hypothesis

The Ammis
˙
aduqa data – both the Figs. ǡ–Ǣ, and the Bayesian posterior probabilities –

suggested that the HC is the correct chronology, but they did not suffice to establish it
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on the 5% level. We now use the HC as our working hypothesis, and we have to test the
hypothesis that HC is wrong with the help of the Ammiditana data.

We take the ǠǞǟǡ month-length data and the miss counts of Tab. ǣ. If the HC is
wrong, the Ammiditana miss count is distributed like a draw from a binomial distribu-
tion with n= 17 and the parameter p= 0.47, whether or not we assume the presence
of an additional intercalation. The smaller of the two miss counts (without and with
the additional intercalation) then is distributed like the smaller of two draws from this
binomial. With the default ΔT , the smaller of the observed miss counts is 3 (see Tab. ǣ),
and the probability of achieving ⩽3 misses is 2.4%. If we decrease ΔT by 3 minutes, the
Ammiditana miss count for −1701 is decreased by 1 unit, and the minimum rejection
level is reduced from 2.4% to 0.50%. Calculations with any of the other chronologies
no longer are relevant. In other words, we reject wrongness of the HC on a level below
3%, possibly below 1%.

A possible criticism that might be raised against these calculations is that we draw
pairs of chronologies spaced by one month, and so the draws are not quite random.
But an empirical test (comparing pair-wise random draws with single draws from the
calculated sequence of month-lengths) shows that the approximation nevertheless is ex-
cellent.

We emphasize that this test relies only on the secure rate of p=0.47. In addition to
confirming that one of the four chronologies is correct, namely the HC, it simultane-
ously implies that the Old-Babylonian miss rate for a correct chronology is substantially
below 47%, and that the other three chronologies are wrong.

We summarize that we can confirm the HC with better than 95% confidence, and if we are
willing to lower ΔT by 3 minutes against the arbitrarily assumed default formula, it is confirmed
even with over 99% confidence.

ǣ.Ǡ.Ǡ Joining the Ammis
˙
aduqa and Ammiditana data

Alternatively, we may join the two data sets. The counts are shown in Tabs. Ǣ–ǣ, and the
situation is depicted in Fig. Ǥ. We again expect that one of the four main chronologies
is correct and is drawn from the left-hand distribution (p=0.33), while the other three
are wrong and are drawn from the rightmost distribution (p = 0.47). Since for each
chronology we again are considering the better matching of two possibilities, the vertical
lines indicate the lower value of the two counts, and the distribution of the lesser of two
independent draws from the right-hand binomial (p= 0.47) is depicted in the middle.
There is considerable overlap between the distributions, but the figure clearly suggests
that −1701 is the correct chronology and that both middle two chronologies are wrong.
This can be quantified by calculating minimum rejection levels.
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Binomial (p=0.33, p=0.47 (best of 2), p=0.47), n=49

nmiss
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Fig. Ǥ Ammiditana+Ammis
˙
aduqa data (set available in ǠǞǟǡ). Binomial distributions for p = 0.33 (correct

chronology) and p = 0.47 (wrong chronology); n = 49. In between the two, also the distribution of the best
of two wrong chronologies is shown. The vertical lines indicate the number of misses obtained for the Ǣ main
chronologies with the combined Ammis

˙
aduqa-Ammiditana data. The lines correspond to the numbers obtained

for the best of two fits (that is without or with the additional intercalation): −1701: 15, −1645: 25, −1637: 24,
−1581: 22.

We perform statistical tests between the hypothesis H (chronology correct, p= 0.33)
and the alternative A (chronology wrong, p= 0.47). Let x be the number of misses and
assume that the binomial distributions B(n, p), with the above values of p, and n= 49,
give adequate approximations for the probability distribution of the miss counts.

(ǟ) Test A against H
In this case, we have to test A (wrongness of the best fitting chronology). That is, we
ought to check whether the best alignment we had found (among 4 chronologies and 2
intercalation patterns for each) fits significantly better than what can be expected from
the best of 8 randomly chosen wrong alignments. We run into similar sample size prob-
lems as above with the Ammis

˙
aduqa data, but the rejection level (the probability that

the best of four random wrong chronologies yields 8 or fewer misses) is somewhat reduced,
namely to 11.1% for the ǠǞǟǡ set. This number is conservative: the (somewhat arbitrary
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default) formula for ΔT yields a local maximum of the counts (see Figs. ǟǟ–ǟǠ of Sec-
tion ǧ), and decreasing ΔT by merely 3 minutes would lower the counts by 1 unit and
lower the rejection level from 11.1% to 5.2%. These tests rely only on the theoretically
secure rate p= 0.47.

(Ǡ) Test H against A
This test is included here to illustrate the ancillary use of the 33% rate to add evidence
that a particular chronology is wrong. Assume that you reject H (correctness of the
chronology) if x⩾ k, and thereby accept A (wrongness of the chronology). Then, the
probability of falsely rejectingH can be calculated from the binomial distribution appro-
priate for H (p= 0.33). For example, with the ǠǞǟǡ data set for the Low Middle chronol-
ogy we have 24 misses for +0 and 28 for +1, and we obtain for the probability of falsely
rejecting correctness of that chronology 1.47% or 0.04%, respectively. We stay on the
conservative side if we pick the lower miss count and the higher P-value (if we had as-
signed equal probabilities to +0 and +1, we would have taken the average of the twoP-values). Thus, we obtain the results seen in Tab. Ǥ.

Chronology 2013; n = 49 P (x ⩾ k)

−1645 k= 25 0.68%

−1637 k= 24 1.47%

−1581 k= 22 5.51%

Tab. Ǥ Ammiditana +

Ammis
˙
aduqa. Error probability

when rejecting correctness of
a chronology.

Thus, for each of the two middle chronologies we can assert, with error probabilities below 2%, that
it is wrong. This result is dependent on the reliability of the estimated value p= 0.33.

With this test, the case of the Low chronology (−1581) is inconclusive. While in
Fig. Ǥ it sits where we expect a wrong chronology to sit, Tab. Ǥ shows that the fit is
not sufficiently poor that the chronology can be rejected on its own merit with the
conventional 5% significance level.

ǣ.Ǡ.ǡ Combining the Ammis
˙
aduqa and Ammiditana data by Bayesian methods

Probabilities from different sources are easiest to combine by Bayesian methods, but it
is difficult to agree on the choice of prior probabilities. We must consider eight pos-
sibilities: four chronologies, and for each of them absence or presence of an additional
intercalation. For the following I give equal probabilities 0.25 to the four main chronolo-
gies, and probability α to the presence of an additional intercalation. As in Section ǣ.ǟ
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these priors are multiplied by

( p (1 − q)
(1 − p) q

)k

where p = 0.33, q = 0.47, and k is the number of misses. The posterior probabilities of
the eight possibilities are obtained by scaling the resulting values so that they sum to 1.
The sum over the four components with additional intercalation then gives the posterior
probability β of having such an intercalation, and for each particular chronology the
posterior probability is the sum of the two values without and with intercalation.

If we were able to prove that there was no additional intercalation, we have α = 0.
If we could make sure that there was one, we have α = 1. Some people might want to
formalize ignorance by α = 0.5, but most might gravitate towards a small value, sayα = 0.05 or α = 0.1. The results of the calculation for the ǠǞǟǡ set (i.e. with the miss
counts of Tab. ǣ) are listed in Tab. ǥ.

We note first that α= 0.1 suffices to boost the posterior probability of an intercalation to
β= 0.85 and the posterior probability of the High Chronology to 0.91, while the other three
chronologies are limited to posterior probabilities below 0.04. Second, confirmation of an addi-
tional intercalation (α= 1) would render the Middle Chronologies utterly implausible.

The results are quite dependent on the observed miss counts. With the ǠǞǟǞ data
set of Tab. Ǣ, the Ammis

˙
aduqa count is more strongly in favor of the High Chronology,

and correspondingly the posterior probability of the latter is as high as 0.91 already forα= 0, and the posterior probabilities of the other three chronologies are all below 0.05.

Prior and posterior probabilities of an additional intercalation:

prior α 0.000 0.050 0.100 0.500 1.000

posterior β 0.000 0.731 0.852 0.981 1.000

Posterior probabilities of chronologies:

prior α 0.000 0.050 0.100 0.500 1.000

HC −1701 0.460 0.843 0.906 0.973 0.983

MC −1645 0.142 0.038 0.021 0.003 0.000

LMC −1637 0.256 0.069 0.038 0.005 0.000

LC −1581 0.142 0.050 0.035 0.018 0.016

Tab. ǥ Ammis
˙
aduqa and Am-

miditana data, ǠǞǟǡ miss counts
of Tab. ǣ. Posterior probabilities
of the four main chronologies.
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ǣ.ǡ Case ǡ: Hammurabi-Samsuiluna

For the Hammurabi-Samsuiluna segment I repeated the analysis of ǟǧǦǠ,28 comprising
54 month-lengths, but used newer astronomical programs. The intercalations are highly
irregular: from Hammurabi year 32 to 36 the New Year longitude increases by 72◦. The
consequence is that for each candidate chronology we must consider at least three dif-
ferent seasonal alignments. Some misgivings about possibly misplaced intercalations
remain.29 If we treat the data as independent evidence, the High chronology (−1701)
again comes ahead. Its miss rate of 20/54= 37% is compatible with that of a correct
chronology, but unpleasantly high and therefore offers only weak supportive evidence.

ǣ.Ǣ Case Ǣ: Ur III

For the Ur III period the situation is more complex, and I shall discuss some of the
problems. If these problems can be resolved, the Ur III month-length data might attain
decisive chronological relevance.

By ǟǧǦǤ we had a total of 228 month-lengths. In ǠǞǟǡ this number was modestly
increased to 240. What I shall discuss here is my more comprehensive analysis of the
smaller earlier set, but using newer programs. Among the different parts of the data, the
Drehem segment from Amar-Sin to Ibbi-Sin (n= 126) probably is to be trusted most.
With the Umma segment from Amar-Sin to Ibbi-Sin (n= 60) there are doubts about
the intercalations,30 and with the Šulgi segment from year 39 to 48 (n= 42) there are
serious doubts about the calendar.

The relative chronology from the beginning of the Ur III dynasty to the end of the
Hammurabi dynasty is well established. By reckoning back from the four main Venus
chronologies one obtains for Amar-Sin year 1 = −2099, −2043, −2035, −1979.31 We
stay on the safe side by assuming that the true date is within ±10 years of the back-
reckoned dates, and that the New Year syzygy longitude is between 310◦ and 50◦. Then
we obtain about 75 feasible alignments for each of the four chronologies: a range of
21 years for the chronology and a little more than 3 months for the season. The four
chronologies together give a total of 252 feasible alignments (there is an overlap for the
middle chronologies).

A simple calculation with the binomial distribution shows that if we are considering
the best of 75 alignments, we need over 70 month-lengths such that the correct chronol-
ogy has an even chance of sticking out, and if we want it to stick out with 90% probabil-
ity, we need about 180 correctly distanced month-lengths. In any case, the Umma and

28 Huber, Sachs, et al. ǟǧǦǠ.
29 See Huber, Sachs, et al. ǟǧǦǠ, ǡǤ.
30 See Huber, Sachs, et al. ǟǧǦǠ, ǡǦ.

31 See Sallaberger ǠǞǟǡ, who points out that indepen-
dent reconstructions suggested uncertainties in the
range of ±1 year.

ǢǤ



̤̙̞̗̔̑ ̩̒ ̝̟̞̤̘-̜̞̗̤̘̣̕ ̢̦̙̣̙̤̔̕̕

Šulgi segments are too small to be used for independent dating on their own – that is,
unless we encounter extraordinarily lucky low miss counts. See also the discussion of
the NB data in Section Ǣ.

Among 8000 alignments between −2213 and −1567, the absolutely best fit of the
228 month-lengths gave 84 misses (with the earlier programs 83 misses)32 and was ob-
tained for three chronologies (Amar-Sin year 1 = −2093, −2020, or −1775). The first is
inside a feasible window, corresponding to the High chronology. Among the 252 feasi-
ble alignments, by chance the 7 best of them happened to contain representatives from
all 4 main chronologies. The 6 alignments matching Middle or Low chronologies had
miss counts between 88 and 90.

The best obtained miss number is unpleasantly high (84/228 = 36.8%). However, the
Drehem subset from Amar-Sin year 1 to Ibbi-Sin year 2 for the same alignment (Amar-
Sin Year 1= −2093, syzygy number of month I=−13 516) gives a miss rate close to the
NB value (43/126 = 34.1%), and the Umma subset even a lower one (18/60 = 30%). On the
other hand the Šulgi segment contributed an extraordinarily high number of misses to
the total, namely 23 out of 42 months. Note that this rate, 23/42 = 54.8%, lies even above
the rate expected for a wrong chronology, and the probability that a correct alignment
produces 23 or more misses is merely 0.3%. But by aligning the Šulgi segment 5 months
earlier, the number of misses was reduced from 23 to 14. Through this hypothetical
modification the miss rates were reduced to the NB value: namely for the Šulgi segment
to 14/42 = 33.3% and for the full set to 75/228 = 32.9%. With this modification, the fit of
the −2093 chronology, giving 75 misses, was far superior to the best of the other feasible
alignments (86 misses for the −2037 and −1979 chronologies). In any case, the original
Šulgi segment appeared to be the odd man out, and I wondered whether Šulgi’s years
began in fall.

The calendars of Drehem and Umma were not synchronized, and several intercala-
tions differ.33 The intercalary months usually, but not always, were inserted at the end
of the year. Sometimes a ǟǡth month was used by the scribes as a placeholder for the
first month of the next year, if the name of the new year was not yet known to them.

Wu Yuhong distinguishes between two different calendars used in Ur III times.34

The month-names of what he calls the Mǎsda calendar were i: iti-mǎs-dà-gu7, ii: iti-̌sěs-
da-gu7, iii: iti-u5-bí-gu7, iv: iti-ki-siki-dNin-a-zu, v: iti-ezem-dNin-a-zu, vi: iti-á-ki-ti,
vii: iti-ezem-dŠul-gi, viii: iti-̌su-ěs-̌sa, ix: iti-ezem-mah

˘
, x: iti-ezem-an-na, xi: iti-ezem-

Me-ki-gál, xii: iti-̌se-kin-kud. However, at least in Šulgi years 44–48, an alternative so-
called Akiti calendar was in use, where the year began in fall, with month vi: iti-á-ki-ti
of the Mǎsda calendar. This would seem to give a posterior justification to the experi-

32 See Huber ǟǧǦǥ, ǟǢ–ǟǣ. 33 This was noted already by Huber, Sachs, et al. ǟǧǦǠ,
ǡǦ. See now Wu Yuhong ǠǞǞǠ for a detailed investi-
gation.

34 Wu Yuhong ǠǞǞǞ.
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mental ǣ-month shift I had applied to the Šulgi data (the years 44–48, where the Akiti
calendar had been in use, contain about three quarters of the Šulgi month-lengths avail-
able to us). From Amar-Sin on, the Mǎsda calendar was in use.

Now, what should we do: keep the original Šulgi data, shift them by 5 months, or
ignore them? Either way, the Ur III data provide additional, admittedly not quantifiable
support for the High chronology. The Middle chronologies give poorer fits. But the
Ur III calendars and their synchronization clearly need more investigation before they
can be fully trusted for the purposes of dating.

Ǥ Summary: internal consistency and coherence of the results

The Ammis
˙
aduqa month-length data show the pattern to be expected from one correct

and three wrong chronologies, see Figs. ǡ–Ǣ, and they point toward correctness of the
High chronology (−1701). The Ammiditana data show the same behavior, see Fig. ǣ.
The discussion of Tab. ǣ in Section ǣ.Ǡ provides strong evidence in favor of the High
chronology and against the Middle chronologies. Clean quantitative results are obtained
by forming a working hypothesis on the basis of the Ammis

˙
aduqa data and then testing

it with the Ammiditana data. This approach allows to affirm the High chronology on at
least the 5% level, and if we are willing to lower ΔT by 3 minutes against the arbitrarily
assumed default formula, it is confirmed even on the 1% level. By a Bayesian argument
it can be shown that the High chronology is roughly 25 times more probable than each
of the other three main chronologies (Tab. ǥ).

The Hammurabi-Samsuiluna and the Ur III data support these results, even if their
reliability might be questioned. In addition, the Simānu eclipse of EAE 20, commonly
thought to refer to the death of Šulgi, can be identified with the lunar eclipse of −2094
July 25, just one year before the date −2093 of Amar-Sin year 1 suggested by the month-
lengths. None of the other possible identifications of that eclipse fall within one of the
time windows implied by the Venus chronologies.35

The test performed in Section ǣ.Ǡ.ǟ implies that also for Old-Babylonian times the
miss rate for a correct chronology is substantially below that for a wrong chronology.
The miss counts corresponding to the High chronology, as shown in Figs. ǡ, Ǣ, ǣ, and Ǥ,
all approximately correspond to the 33% Neo-Babylonian rate. This does not prove that
the OB rates for correct chronologies are equal to the NB rates, but at least they do not
contradict such an assumption.

35 See Huber ǟǧǧǧ/ǠǞǞǞ, ǥǥ, for a list of alternative
identifications (the next eclipses matching the de-

scription in the omen are in −2018, −2007, −2001,
−1936).
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In my opinion, internal coherence of the results is an even stronger indication of
their trustworthiness than any statistical significance assertions. And anyone desiring to
defend one of the Middle chronologies, rather than ignore the opposing month-length
evidence, or simply discount it as being the only witness in favor of the High chronology,
should better find plausible arguments discrediting the evidence of Figs. ǡ, Ǣ, ǣ, and Ǥ. In
order to be convincing, such arguments would seem to require new data. They might
be based on a large, reliable set of contradictory new month-length data, or on new
eponym lists bridging the interval between Old Assyrian and Neo-Assyrian times.

ǥ Modeling and simulation of crescents and month-lengths

In statistics, the principal purpose of modeling and stochastic simulation quite gener-
ally is to obtain crude estimates of the statistical variability of various empirical measure-
ments. The models are designed to give a satisfactory phenomenological description of
the situation. Whether they can give a causal explanation is a more difficult and possibly
unanswerable question. Here are the facts and assumptions on which we shall base the
models.

For randomly chosen wrong chronologies the agreement/disagreement rates be-
tween observed and calculated month-lengths are fixed by astronomical theory, that
is by the length of the synodic month (29.5306 days): 53% of the months have 30 days,
47% have 29 days. It follows that a collection of ǡǞ-day months, when aligned at random
along a calculated sequence, has an expected miss rate of 47%.

An approximate estimate of the variability of empirical miss rates then can be ob-
tained from the binomial distribution for which the miss counts have the standard de-
viation

√n p (1 − p). An alternative, perhaps more reliable version can be found by
aligning a batch of observed ǡǞ-day months at many positions along a calculated se-
quence of such months. See Fig. Ǡ for a comparison between the two approaches.

For a correct chronology the LB astronomical texts give a rock bottom lower limit of
about 10% for the rate of discrepancies between observed and calculated month-lengths.
I used the calculated sequence of 33 000 months to check the effects of the pure gray-
zone model (with d= 1.1◦). The probability of seeing the crescent 1 day early was 2.56%,
and that of seeing it 1 day late was 2.51%. Months never were shortened to 28 days
by gray-zone effects, but occasionally they were lengthened to 31 days. With calculated
Ǡǧ-day months, lengthening to 31 days happened in 0.06% of the cases, with ǡǞ-day
months in 0.23% of the cases (that is, about once in a human life-time). Calculated Ǡǧ-
day months were lengthened to 30 days in 10.4% of the cases, and ǡǞ-day months were
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shortened to 29 days in 9.4% of the cases. This corresponds to the 10% miss rates of the
LB astronomical texts.

The NB administrative texts give a higher discrepancy rate. As mentioned in Sec-
tion Ǣ there are 149 NB texts dated to day 30, and 49 of them occur in a month that
according to calculation has 29 days. The discrepancy rate thus is approximately 29/149 =

33%. Up to 27 of these 49 discrepancies might be explainable by ‘gray-zone’ effects of
early or late sightings, namely those for which |Δh| ⩽ 1.1◦, but at least 22 discrepancies
must have a different cause. Note that at the begin of a month lengthening can occur
only because of a fortuitous early sighting in the range −1.1 ⩽ Δh ⩽ 0, while at the
end poor weather or sheer lack of care might cause a delay with values of Δh larger
than +1.1.

I propose a simple two-component model. One component corresponds to the
‘gray-zone’ model of the astronomical texts, and the other to a practice of ‘overhang
dating’ or ‘double dating’ (a term preferred by Michael Roaf) by the ancient scribes:
when dating a text they would occasionally write day 30 in cases where they more prop-
erly should have written day 1 of the next month. The consequences of such a model
shall be developed in Section Ǧ (following next). Evidence for the presence of overhang
dating is contained in Sallaberger’s remark,36 according to which Amar-Sin year 5 con-
tained 9 day-ǡǞ dates, instead of the expected 6. In other words, we can have more day-ǡǞ
dates than are astronomically possible. Note that variability caused by ‘gray-zone’ effects
would stay on in the calendar, while ‘overhang’ effects would not. If the officials respon-
sible for the calendar should decide that the preceding month had had only 29 days, the
scribe simply would skip a day and let day 30 be followed by day 2.

A letter to an Assyrian king (presumably Assurbanipal) has the remarkable passage:

I observed the (crescent of the) moon on the ǡǞth day, but it was high, too high
to be (the crescent) of the ǡǞth. Its position was like that of the Ǡnd day. If it
is acceptable to the king, my lord, let the king wait for the report of the Inner
City before fixing the date.37

This letter is interesting because it shows that the beginning of the month could be fixed
retroactively, and possibly the length of the preceding month even could be shortened
to 28 days.

A possible argument against this simple overhang model is that a (preliminary)
investigation of Ur-III-time month-lengths based on regular deliveries did not seem to
give a substantially better agreement with calculation than those based on day-ǡǞ dates.

We do not know when and why the scribes would use overhang dating, but we can
crudely estimate how often it may have occurred in the NB material. In Section Ǣ, I had

36 Sallaberger ǟǧǧǡ, ǟǠ. 37 Parpola ǟǧǧǡ, Letter ǠǠǣ.
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estimated that overhang might occur between 40% and 50% of the cases. The theoretical
model of the next section gives the best fit when assuming an overhang probabilitypov = 0.46.

Overhang dating according to the model just described raises a problem: if many
scribes independently use it, then every true hollow month ultimately will acquire some
overhang dates. But true full months will obtain day-ǡǞ dates more often than true
hollow months. In this case the proper solution is to count dates with their observed
multiplicity. On the other hand, whenever multiple dates originate in the same scribal
office, they are strongly dependent and one should count them only once. It is difficult
to separate these cases. Here, I acted as if the second case applied and counted multi-
ple occurrences only once (with the presently available material they are relative rare
anyway).

Ǧ Theoretical miss rates

Independently of the cause of the discrepancies between calculated and observed month-
lengths, the calculation of the miss rates of day-ǡǞ dates is, essentially, a straight exercise
with conditional probabilities.

The miss rate in question is the conditional probability, given a recorded day-ǡǞ date
(D30), that the underlying month calculates as a Ǡǧ-day month (C29):

pmiss = P(C29|D30) = P(C29 & D30)P(D30) .

We haveP(C29 & D30) = P(D30|C29) P(C29),P(D30) = P(D30|C29) P(C29) + P(D30|C30) P(C30).

HereP(C29) = 0.47,P(C30) = 0.53.

If we assume zero width for the gray zone, and that overhang occurs at random with
probability pov, and if we assume that dates higher than day 30 are not permitted, thenP(D30|C29) = pov,P(D30|C30) = 1,
and we can substitute these values into the above formula for pmiss.

Now assume a gray zone with finite width, such that in the absence of overhang the
miss rate for month-lengths is μ = 0.1.
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Then, the last two probabilities are changed toP(D30|C29) = pov + (1 − pov) μ,P(D30|C30) = 1 − (1 − pov) μ.

The justification for these formulas is as follows.
– Given that there is overhang in that particular month, then P(D30|C29) = 1,

and given that there is none, then P(D30|C29) = μ.
If overhang occurs with probability pov, then we obtain the first of the above for-
mulas.

– Given that there is overhang in that particular month, then P(D30|C30) = 1,
and given that there is none, P(D30|C30) = 1 − μ.
If overhang occurs with probability pov, then we obtain the second of the above
formulas: P(D30|C30) = pov + (1 − pov)(1 − μ) = 1 − (1 − pov) μ.

I believe the most questionable assumption in the above arguments is that overhang
occurs at random (i.e. independent of Δh). It appears at least plausible that overhang
is more likely to occur for small values of Δh than for large ones. But the NB material
does not really support such a conjecture, see Tab. ǡ. It shows a clear cluster of values in
the gray zone (Δh ⩽ 1.1). In the range between 1.6 and 6.8 the number of Δh values
shows a moderate decrease, but this decrease seems to go in parallel with a decrease in
the number of Δh values calculated for Ǡǧ-day months.

The following probabilities were calculated with the above model, on the basis
of 33 000 calculated month-lengths, not on the binomial distribution, by applying the
model to a large number of randomly chosen subsets of the calculated sequence. The
overhang probability was empirically adjusted to pov = 0.46, so that the combined mod-
el approximately reproduced the miss rate of 50/153= 0.327 of the Neo-Babylonian ma-
terial.

For the purpose of these modeling calculations I assumed for the gray zone model:
– if Δhd < −1, the crescent is never seen;
– if −1 ⩽ Δhd ⩽ 1, the crescent is seen with probability (1 + Δhd )/2;
– if Δhd > 1, the crescent is always seen,

with d = 1.1◦ (in ǟǧǦǠ I had used d = 1.0◦).

Pure overhang model (overhang probability pov = 0.46):
Miss rate P(C29|D30) = 0.290

Pure gray zone model (zone width d = 1.1◦):P(D30|C29) = 0.104P(D30|C30) = 0.906
Miss rate P(C29|D30) = 0.092
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Binomial and empirical, n=27

NMISS

  .0 10.0 20.0 30.0

P
R

O
B

 .00

 .05

 .10

 .15

 .20

⋆
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Fig. ǥ Comparison between the binomial distribution (n= 27, p= 0.325, blue) and the empirical frequencies
obtained from ǟǞǞǞ samples based on the overhang model (d= 1.1◦, pov = 0.46, red).

Combined model (pov = 0.46, d = 1.1◦):P(D30|C29) = 0.516P(D30|C30) = 0.949
Miss rate P(C29|D30) = 0.325

The sequence of calculated month-lengths is not quite random, and therefore the dis-
tribution of the miss counts does not necessarily follow a binomial distribution. In the
case of the wrong chronologies, it had been possible to compare the binomial distri-
bution with the results of a large number of alignments (Fig. Ǡ). The case of the cor-
rect chronology is less straightforward, but we can compare the binomial distribution
with the results of the simulated error model. Also here the binomial distribution gives
a very good approximation. Fig. ǥ shows a comparison between the empirical frequen-
cies based on the above overhang model (d= 1.1◦, pov = 0.46) and the binomial dis-
tribution (n= 27, p= 0.325). The empirical frequencies were obtained by drawing
1000 random samples of size 27 from the calculated sequence of months and then ap-
plying random gray zone and overhang effects.
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ǧ Sensitivity to the clock-time correction ΔT
A central problem of historical astronomy is our insufficient knowledge of the clock-
time correction ΔT = ET − UT (the difference between the uniform time scale ET
underlying the astronomical calculations and civil time UT depending on the irregular
rotation of the earth). Because of tidal friction ΔT increases quadratically with time, but
it is subject to sizable random fluctuations. By now, it is reliably known back to 700 BC
within a standard error of approximately 5 minutes, but its extrapolation from there to
2000 BC is affected by a standard error of about 1 hour.38

For the present paper I have assumed a formula proposed by Morrison and Stephen-
son (in a paper published in ǟǧǦǠ) as my default:39 ΔT = c t2 sec, with c = 32.5
and t measured in centuries since AD 1800, together with lunar orbital accelerationṅ = −26′′/cy2. I made this choice for three reasons: first, because of its simplicity, sec-
ond, because calculations based on it agree very closely with the traditional tables by
P. V. Neugebauer and Tuckerman,40 and third, last but not least, if the solar eclipse of
Sargon of Akkad has been correctly identified, it implies thatΔT in the mid-ǠǢth century
was between −20 and +7 minutes of that default.41 For that time this corresponds to
a range of c between 31.7 and 32.8. Moreover, this solar eclipse now would seem to de-
termine the clock-time correctionΔT with a standard error of the order of 10–15 minutes
back to the ǠǢth century BC. If the Ugarit eclipse of −1222 has been correctly identified,
perhaps 10 minutes higher values of ΔT , corresponding to values of c that are about
0.5 higher, may hold for the Ur III and OB periods.42

I found it convenient to vary ΔT by modifying the parameter c; note that a change
of 1 unit in c by −1700 amounts to a change of 20 minutes in ΔT . I believe that the
most probable range of c is between 31.5 and 33.5, but for the sensitivity study depicted
in Figs. Ǧ, ǧ, ǟǞ, ǟǟ, and ǟǠ, I have applied a range of c between 27 and 38, that is of
approximately ±2 hours for the Ur III and OB periods. These figures are based on the
data available in ǠǞǟǡ.

One of the questions to be addressed by this sensitivity study was whether perhaps
the sensitivity of the miss counts to ΔT was such that that ultimately they might be used
to improve our estimates of ΔT .

38 Huber ǠǞǞǤ.
39 Morrison and Stephenson ǟǧǦǠ.
40 P. V. Neugebauer ǟǧǠǧ; Tuckerman ǟǧǤǠ; Tucker-

man ǟǧǤǢ.
41 Huber ǠǞǟǠ; Morrison and Stephenson ǟǧǦǠ. The

formula more recently proposed by the latter
authors in ǠǞǞǢ for extrapolation beyond −700,

namely ΔT = −20 + 32t2 sec, with t in centuries
since AD 1820, differs only negligibly: the differ-
ence in ΔT increases from 0 in −600 to 3 minutes
in −1700 and 6 minutes in −2400 (Morrison and
Stephenson ǠǞǞǢ).

42 Huber ǠǞǟǠ, Fig. ǡ, showing the deviations from the
default ΔT and their variability.
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As_32, n=32: dependence of misses on DeltaT
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Fig. Ǧ Sensitivity of miss counts to ΔT , Ammis
˙
aduqa data; n= 32.

We note that in the figures for the Ammis
˙
aduqa data (Fig. Ǧ), for the Ammiditana (+1)

data (Fig. ǟǞ), and for their combination (Fig. ǟǠ), the default ΔT (c= 32.5) yields a
local maximum of the miss counts for the High chronology, with a local minimum forc between 30.5 and 31.25. This minimum is reached by a decrease in ΔT of about 25
minutes. I was almost tempted to derive an improved estimate of ΔT for the OB period
from this. At the same time, lowered values of the miss counts would much improve the
rejection levels in Section ǣ.Ǡ, see in particular Section ǣ.Ǡ.ǟ. However, I do not intend
to insist on these arguments.

But in any case, this sensitivity study shows that our default choice forΔT , by leading
to a local maximum for the miss counts, happens to be conservative.
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Ad0_17, n=17: dependence of misses on DeltaT
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Fig. ǧ Sensitivity of miss counts to ΔT , Ammiditana data, +0 intercalation; n = 17.

Ad1_17, n=17: dependence of misses on DeltaT
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Fig. ǟǞ Sensitivity of miss counts to ΔT , Ammiditana data, +1 intercalation; n = 17.
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Ad0As_49, n=49: dependence of misses on DeltaT
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Fig. ǟǟ Sensitivity of miss counts to ΔT , Ammiditana-Ammis
˙
aduqa data, +0 intercalation; n = 49.

Ad1As_49, n=49: dependence of misses on DeltaT
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Fig. ǟǠ Sensitivity of miss counts to ΔT , Ammiditana-Ammis
˙
aduqa data, +1 intercalation; n = 49.
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ǟǞ Appendix: the underlying data base

ǟǞ.ǟ Intercalations during the reign of Ammis
˙
aduqa

The connection of the Venus text with the reign of Ammis
˙
aduqa had been established by

Kugler in ǟǧǟǠ, when he identified the year name ‘Year of the Golden Throne’ occurring
in the Ǧth year of the Venus text with the name of the Ǧth year of king Ammis

˙
aduqa.43

Since then, some doubts about the conclusiveness of the identification have been voiced
(there are other year names involving a Golden Throne), but we now can establish the
connection beyond doubt with the help of the intercalations.

The Venus text has first visibilities of Venus in the morning of Year 1 XI 18 and
of Year 17 XII 14, thus spaced 16 years and 1 month. Between these dates there are 10
synodic periods of Venus, corresponding to 5840 days or 198 synodic months. As 16
lunar years contain only 16× 12 = 192 months, there must be 5 intercalations between
these two dates. In order to obtain the correct spacing between Venus phenomena, the
5 intercalations in question must have occurred as:

(ǟ) (4A or 4U), (5U), (9A or 10U), (11U attested), (13U or 13A or 14U).

Here, A stands short for a second Addāru (XII2), U for a second Ulūlu (VI2).44 On the
other hand, contemporary administrative documents attest the following intercalations
for the first 16 years of Ammis

˙
aduqa:

(Ǡ) 4A, 5U, 10U, 11U, 13A.

In addition, they attest a 17A. Note that texts from Sippar Amnanum show that the years
previously provisionally denoted 17 + a and 17 + b can be identified with the years
17 and 18.

The probability that an agreement as good as that between (ǟ) and (Ǡ) occurs by
chance is less than 1 in 1000. This can be calculated as follows. There are 15×14×13×12×11

6×2
= 30 030 possibilities for placing 3 U tokens and 2 A tokens in 15 slots (the 15 years from
2 to 16). However, not all are feasible. Intercalations are inserted to keep the years in step
with the agricultural seasons, and on average a regular year decreases the New Year lon-
gitude by 10.7◦, while an intercalary year increases it by 18.4◦. If we only permit inter-
calation patterns that keep the difference between the maximal and minimal New Year
longitude below 45◦ or 50◦ – for the actual Ammis

˙
aduqa intercalations this difference

is 44.5◦ – merely between 20% or 30% of the possibilities remain feasible. Among the
12 patterns of intercalations made possible by the Venus text, 4 satisfy the requirement

43 Kugler ǟǧǟǠ. 44 Following the convention of Parker and Dubber-
stein ǟǧǣǤ, Ǥ.
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that there are 3 U and 2 A tokens. Thus, the probability of hitting by chance a pattern
compatible with the Venus text is approximately 4 in 6000 trials, that is 0.0007.

This has important consequences. It shows that the Venus text refers to the time of
Ammis

˙
aduqa, and that the traditional year count of the Venus tablet agrees with years 1

to 17 of that king. Moreover, we know that we have a complete list of all intercalations
of years 1 to 17, except that perhaps an intercalation 1U might be missing.

Tab. Ǧ lists the intercalations attested or implied by the Venus Tablet, and those
attested by contemporary contracts. Unpublished data mentioned in LFS are highly un-
reliable; among them, 5U has now been confirmed by the Cornell text CUSAS 8 55,45

while 14U in all probability is wrong. The second-but-last column counts the number of
months preceding the beginning of the year, and the last column gives the deviation of
the New Year syzygy longitude from that obtained for Year 5 (which for all chronologies
within 1◦ corresponds to the median value).

Year 18 is missing in the Venus text, and years 19–21 constitute the highly question-
able ‘Section III’ of the text. We shall ignore evidence derived from that section of the
Venus text.

Seth Richardson points out that the names of years 13 and 17 are almost indistin-
guishable, so some texts may have been misclassified. This should not create problems
with regard to intercalations (both years have a second Addāru), but might do so with
regard to month-lengths.

ǟǞ.Ǡ Intercalations during the reign of Ammiditana

The intercalations in Tab. ǧ are attested for the 37 years of Ammiditana.46 The last col-
umn gives an arbitrary count of month numbers preceding the begin of the year (as in
Section ǟǞ.ǟ above).

For the first 21 years of Ammiditana only 4 or 5 intercalations are attested, whereas
the expected average is 7 in 19 years, so some appear to be missing. For the last 16 years
(years 22 to 37) 8 intercalations are attested. There is a surprising sequence of 4 consec-
utive intercalary years (25 to 28), and even if we delete the improbable month XI2(!?)
in year 25, we are still slightly above the expected average. For 25 XI2 the text has ITI
ZIZ2 DIRI(= SI.A) instead of the expected ITI ZIZ2.A, and we can assume that this is a
scribal error. So it is possible that we have the full pattern of intercalations for the years
22 to 37.

45 Search for this text in http://www.archibab.fr/
4DCGI/recherche5.htm, under Mois: 6-bis, Roi:
Ammis

˙
aduqa, Année: 5 (visited on ǟǥ/ǥ/ǠǞǟǥ).

46 From Huber, Sachs, et al. ǟǧǦǠ.
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Year Venus Tablet Contracts MNU NYL

1 0 12◦

2 12 2◦

3 24 −8◦

4 A or U implied A VAS 7 76; BM 17563 36 −18◦

5 U implied U CUSAS 8 55 49 0◦

6 62 18◦

7 74 7◦

8 86 −4◦

9 9A or 10U 98 −14◦

10 9A or 10U U YOS 13 532; BE 6/1 106; BM 81130;
BM 26602

110 −24◦

11 U attested U CT 8 3a; BM 81350 123 −6◦

12 136 12◦

13 13U or 13A or 14U implied A YOS 13 404; TLB 1 211; BIN 7 208-9;
BM 78461; BM 79435; BM 81396;
BM 81747; Dalley, Edinb. No.20;
OLA 21 no.69; CUSAS 8 13

148 1◦

14 (U LFS unpublished) 161 19◦

15 173 9◦

16 185 −2◦

17 A TCL 1 171; BAP 9; VAS NF II 99;
YOS 13 53; BM 79010

197 −13◦

18 210 5◦

19 U attested U YOS 13 146 222 −5◦

20 A or U implied 235 13◦

21

Tab. Ǧ Intercalations attested or implied by Venus Tablet and those attested by contemporary contracts.
Previously uncertain year names: 17 + a = 17; 17 + b = 18; 17 + c = 2; 17 + d = 19.
For 17 = 17 + a and 18 = 17 + b, see Nahm ǠǞǟǢ.
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Yr Type Text MNU

1 regular


















(cf. BE 6/1 82:14–22. Between Ae 28 III 30 and
Ad 5 XII 30 there are 5 years and 10 months.)2 regular

3 regular

4 XII₂ BE 6/1 91; YOS 13 205

5

6

7

8

9

10 XII₂ PBS 8/2 202; AO 8126; BM 17313; BM 78465

11 (XII₂ LFS unpubl.)

12

13 XII₂ BM 22522

14 XII₂ YOS 13 1 = HSM 48 (coll. Moran)

15

16

17

18

19

20

21

22 XII₂ YOS 13 197; PSBA 34 24; see YOS 13 p.1 and JCS 13 39a 799

23 812

24 824

25 XI₂(!?) YOS 13 272 836

26 XII₂ CT 6 39a= BM 80596; BM 16684(?, coll. Walker) 848

27 XII₂ BE 6/2 109 861

28 XII₂ BM 80977 874

29 887

30 899

31 911

32 XII₂ BM 78668; BM 16535; MHET 1/1 11 923

33 XII₂ BE 6/2 112 936

34 949

35 961

36 973

37 XII₂ Kraus, Edikt 28 3′; RA 63,48 37–39; YOS 15 72; BM 79897 985 Tab. ǧ Intercalations attested for
the reign of Ammiditana.
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However, the intercalary pattern is highly irregular. There are 3 consecutive inter-
calations in the years 26–28. I do not think that in the immediately preceding or fol-
lowing 3 years intercalations are missing, but for the 7 years between Ammiditana 34
and Ammis

˙
aduqa 3 only a single intercalation is attested. Note that on average a regular

year decreases the New Year solar longitude by 10.7◦, while an intercalary year increases
it by 18.4◦. Thus, the 3 intercalary years 26–28 increase the New Year longitude by 55◦,
while the 7 years from year 34 on, containing 6 regular and 1 intercalary years, decrease
it by 46◦.

Given the irregular pattern of intercalations, the lack of attested intercalations be-
tween the years 15–21, and the wide spread of the New Year longitudes (their range is
58◦ for Ammiditana, 44◦ for Ammis

˙
aduqa), we cannot exclude the possibility that near

the border between the Ammiditana and Ammis
˙
aduqa blocks an unattested interca-

lation is missing, for example a XII2 in Ammiditana Year 36, or a VI2 in Ammis
˙
aduqa

Year 1. This choice shifts the entire block of attested month-lengths (from 24 IV to 36 XII)
together by 1 month. We should keep the possibility of an additional intercalation in
mind.

ǟǞ.ǡ The Ammis
˙
aduqa month-lengths

The month-lengths in Tab. ǟǞ are attested in contracts from the reign of Ammis
˙
aduqa,

years 1–19.
The list is taken from Astronomical Dating of Babylon I and Ur III,47 21 months with

11 later additions (6 from Marten Stol, between ǟǧǦǠ and ǠǞǟǞ, and 5 from Seth Richard-
son in ǠǞǟǡ, the latter with superscript R and noted with n for ‘new’ in the last col-
umn). Later on, too late to be used in the calculations, Michael Roaf supplied a ta-
ble with month-lengths (mostly collated by Frans van Koppen); it was merged into
the list in Tab. ǟǞ. For the 32 entries used in the calculations, the MNU column gives
the month number, arbitrarily counted from month I of Year 1 (assuming that year 1 is
regular).

Roaf noted: BM 92520 (Meissner BAP 107) and CBS 01346 (Van Lerberghe Mél De
Meyer 159–168) are duplicates. VS 7 109 is dated As 16-02-08 but line 3 mentions iti
bara2-zag-gar u4-30-kam as the date of a recent expenditure. Old Babylonian legal and
administrative texts from Philadelphia by Karel van Lerberghe. Note that MLC 1517
(YOS 13 65) has 30 written on top of 2 or vice versa (Year 19 X 2/30) and so is not
included in the list in Tab. ǟǞ.

47 Huber, Sachs, et al. ǟǧǦǠ, Ǥǣ.
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Year Month Day Texts MNU

1 VII 30 MAH 16218 (TJDB p.31) 7

VIII 30 VAT 06253 (VS 7 68) 8

XII 30 BM 78640; BM 79869R 12

3 IV 30 BM 92606 28

VI 30 VAT 06380A (VS 7 73) 30

4 XI 30 BM 26350a 47

XII₂ 30 VAT 06238 (VS 7 76) 49

5 VIII 30 BM 16644R 58 n

XII 30 MLC 1349 (YOS 13 165) 62

6 VI 30 BM 80804 68

7 XII 30 MLC 0452 (YOS 13 126) 86

11 II 30 BM 80984R; BM 97370R 125

VII 30 BM 97733R 131 n

IX 30 BM 97623 (De Graef, AuOr 20 82f.
no. 06)

12 IV 30 IM 50423 (Edzard, ed Der no.49) 140

VII 30 BM 80896R 143 n

VIII 30 BM 81105 144

13 I 30 BM 97250R 149 n

II 30 BM 17146 150

VI 30 IM 81586 (Van Lerberghe, Mél.
Tanret, 592-594)

X 30 CBS 01219

XII 30 MLC 0828 (YOS 13 220); BM
81677R; BM 97495R

160

XII₂ 30 BM 78459R, BM 81096, CBS 01473
(Van Lerberghe, OB Legal 069)

161 n

14 IV 30 BM 79287 165

VI 30 Strasbourg 324 (Frank 28) 167

VIII 30 CBS 01734 (JCS 11 p.93) 169

(continued on next page)
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(continued from previous page)

Year Month Day Texts MNU

15 II 30 MLC 0822 (YOS 13 221) 175

X 30 BM 13596 (RA 69 p.188) 183

XII 30 BM 80167 (CT 2 18) 185

16 I 30 BM 92520 (Meissner BAP 107);
VAT 06382 (VAS 7 109); CBS
01346 (Van Lerberghe, Mél. De
Meyer, 159–168)

186

XI 30 CBS 01672 (PBS 14 pl.64 no.1078);
VAT 05925, 05938 (Kugler, SSB II
p.246)

196

XII 30 VAT 05391 (VS 7 121); BM 97495 197

17 XI 30 VAT 06287 (VS 7 133) 208

XII 30 VAT 06224 (VS 7 139); BM 80404
(CT 48 76)

209

18 III 30 BM 87292+ 87337

V 30 BM 81624 (CT 48 78) 215

X 30 CUNES 51-01-045 (CUSAS 8 40)

19 III 30 BM 81079R

Tab. ǟǞ Month lengths attested
in contracts from the reign of
Ammis

˙
aduqa.

Previously uncertain year names:
17 + a = 17; 17 + b = 18;
17 + c = 2; 17 + d = 19.

ǟǞ.Ǣ The Ammiditana month-lengths

The month-lengths in Tab. ǟǟ are attested in contracts from the reign of Ammiditana.
In view of the incomplete list of intercalations, only month-lengths from the years

22–37 are usable. The list is taken from Astronomical Dating of Babylon I and Ur III:48

13 months, plus 4 from Richardson ǠǞǟǡ, the latter with superscript R and noted with
n in the last column. Later on, too late to be used in the calculations, Michael Roaf
supplied a table with month-lengths (mostly collated by Frans van Koppen, but in par-
ticular the 26.VI and 26.IX and 36.I need to be confirmed); it was merged into the list in
Tab. ǟǟ. For the 17 entries used in the calculations, the MNU column gives an arbitrary
count of month numbers.

48 Huber, Sachs, et al. ǟǧǦǠ, ǤǢ–Ǥǣ.
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Year Month Day Texts MNU

1 X 30 VAT 6655 (VAS NF 2 15)

XII 30 BM 80336; BM 81465; Bu 1891-05-09, 0473 (CT 6 26b)

2 XI 30 Di 720 (K. van Lerberghe)

XII 30 BM 17482; BM 80623

4 VIII 30 BM 78704 = ? (CT 33 47b)

XII₂ 30 CBS 0723 (BE 6/1 91)

5 XII 30 CBS 0110 (BE 6/1 82)

6 IV 30 BM 80161 (CT 45 46)

7 XII 30 U.7183 (UET 5 518); MLC 00452 (YOS 13 126); CBS 0125

14 III 30 BM 78182 (CT 45 48)

IX 30 BM 109169

XII₂ 30 HSM 48 (YOS 13 1)

24 I or V 30 BM 81569

IV 30 BM 80513 828 n

VII 30 AO 01679 (TCL 1 153) 831
VIII 30 BM 80513

26 VI 30 VAT 5912 (Kugler, SSB II p.246) 854
IX 30 VAT 5806 (Kugler, SSB II p.246) 857

27 VII 30 BM 97441

XII₂ 30 CBS 0366 (BE 6/2 109) 874
29 II 30 MLC 1291 (YOS 13 254) 889
30 IV 30 TJAUB pl.39(H 31) 903

VII 30 BM 97013R 906 n

31 II 30 CBS 1241 (BE 6/1 83) 913
XII 30 CBS 1512 (BE 6/1 84) 923

32 VIII 30 BM 96990R 931 n

XII 30 BM 78609 935
33 IX 30 BM 97447R 945 n

34 VIII 30 MLC 0440 (YOS 13 79) 957
IX 30 VAT 6392 (VS 7 60) 958

36 I 30 VAT 06258

II 30 MLC 0425 (YOS 13 57) 975
XII 30 BM 78719 985

37 IV 30 BM 97057

Tab. ǟǟ Month lengths attested in contracts from the reign of Ammiditana.
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A Text Containing Observations of Mars from the
Time of Nebuchadnezzar II

Summary

This paper dates and analyzes a cuneiform text from Uruk containing planetary observa-
tions. I show that the observations date to the first fourteen years of the reign of Nebuchad-
nezzar II (604–591 BC) and concern the planet Mars. The date of this text places it among
the earliest texts containing detailed records of astronomical observations from Babylonia.
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ǟ Introduction

The tablet W 23009, published as SpTU V 266 by von Weiher,1 contains observations
of the synodic phenomena of a planet for the first 14 years of the reign of a king whose
name is not preserved. The tablet was excavated from the so-called ‘house of the āšipu’ in
Uruk (excavation area U 18) along with several other astronomical tablets.2 The tablet
is small and badly damaged and preserves only a few observation reports from years 12
to 14. Despite the paucity of preserved observational data, it is possible to identify Mars
as the planet whose observations are recorded and to determine that the observations
date to the reign of Nebuchadnezzar II.

The principal interest of this tablet lies not in the details of the observations them-
selves, which as mentioned are badly preserved, but rather in its date. Only four other
texts containing planetary observations of the kind found on SpTU V 266 are known
from before the end of Nebuchadnezzar’s reign:

– BM 41222:3 Observations of Saturn, approaches of Mars and Mercury, and phenom-
ena of Mars, covering parts of the period from (at least) year 8 of H

˘
umbah

˘
aldǎsu

(681 BC) to year 12 of Nabopolassar (614 BC). Positions of the planets relative to
stars are measured in cubits.

– HSM 1899.2.112:4 Observations of the synodic phenomena of Mars from the begin-
ning of Šamǎs-̌sumu-ukin’s reign (681 BC) to (at least) year 39 of Nebuchadnezzar
(566 BC). The early part of the text gives only very brief statements of the dates of
first and last visibilities (often accompanied by a statement that the phenomena was
not observed); the last part of the text, from the time of Nebuchadnezzar, contains
detailed observations of first and last visibilities, stations, and acronychal risings in-
cluding the position of Mars relative to a star measured in cubits.

– BM 76738+ 76813:5 Observations of the first and last visibilities of Saturn from
(at least) the beginning to year 14 of Kandalanu (648–634 BC). Occasionally, the
position of Saturn relative to a star is given with measurements in degrees.

– W 22797:6 Observations of first and last visibilities and stations (but not acronychal
risings) of Saturn from (at least) years 28 to 31 of Nebuchadnezzar II (577–574 BC).
The position of Saturn relative to a star is given with measurements in cubits.

1 The abbreviation SpTU V refers to the volume von
Weiher ǟǧǧǦ.

2 von Weiher ǟǧǧǦ, ǟ; Clancier ǠǞǞǧ, Ǣǥ–ǥǠ; Robson
ǠǞǞǦ, ǠǠǥ–ǠǢǞ; Ossendrijver (unpublished).

3 Published: Hunger, Sachs, and Steele ǠǞǞǟ, No. ǣǠ.

4 Published: Britton ǠǞǞǢ.
5 Published: Walker ǟǧǧǧ.
6 Published: SpTU IV ǟǥǟ by von Weiher (ǟǧǧǡ);

discussion: Hunger ǠǞǞǞ.
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The first three tablets in this list are all almost certainly from Babylon. The last tablet,
hereinafter SpTU IV 171, was excavated from the same ‘house of the āšipu’ in Uruk as
SpTU V 266. It is interesting, therefore, that we have two tablets from this house con-
taining collections of planetary observations from the time of Nebuchadnezzar. It is
believed that this house was occupied by two families of scholars, one during the late
fifth and early fourth centuries BC and the other during the late fourth and early third
centuries BC.7 Thus, both SpTU IV 171 and SpTU V 266 must have either been brought
to this house by one of these later scholars or be a copy of an earlier tablet. It remains an
open question whether the observations recorded on either of these tablets were made
in Uruk or in Babylon.8

Ǡ The text

SpTU V 266 is a fragment from the upper left corner of a tablet. Almost all of the obverse
is lost, but a decent amount of text is preserved on the reverse. It is unclear from von
Weiher’s copy whether the tablet originally contained more than one column on each
side. If it did, then each column of each side probably contained entries for 3 or 4 years,
which would imply that more or less the whole of the original height of the tablet is
preserved; if it is only a one column tablet, then a little under one half of the height of
the tablet is preserved. Context would suggest that little is lost at the end of lines 5–7 on
the reverse, whether or not the tablet originally contained one or two columns.

In addition to a copy, von Weiher gives a transliteration but no translation of the
tablet. Von Weiher’s transliteration is mainly just an attempt to identify the preserved
signs without trying to understand the astronomical content of the tablet. Many of his
readings are marked with a question mark (and some do not agree with his copy). I have
therefore attempted a new reading of the tablet, guided both by the copy and the translit-
eration, but also making a number of educated guesses to correct what seem to be likely
misreadings. These educated guesses go beyond what I would normally allow myself
when trying to read damaged portions of a tablet, but seem to be the only way to make
any progress in understanding the text at this time as, unfortunately, the tablet itself is
currently inaccessible in Iraq and I have not been able to obtain a photograph to allow
a proper collation. I discuss all my corrections to von Weiher’s transliteration in the
critical apparatus.

7 Clancier ǠǞǞǧ, Ǣǥ–ǥǠ. 8 For discussions of whether there was a tradition of
observational astronomy at Uruk, see Ossendrijver
(unpublished) and Steele ǠǞǟǤ.
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Ǡ.ǟ Transliteration

Obverse

(1) MU-1 IdA[G?.NÍG.DU.ŠEŠ]

(2) ⸢GU4
? 4+ x?⸣ […]

remainder lost

Reverse

(1′) x x […]

(2′) MU-12 BAR 24 x [IGI]

(3′) GAN 24 10 UŠ ina IGI [DELE]

(4′) šá ⸢IGI ABSIN?⸣ ina IGI ABSIN U[Š TA x]

(5′) ana ŠÚ LAL-sa AB? IK? ŠE ⸢14?⸣

(6′) 1! šá GIŠ.KUN-šú ana ŠÚ DIB UŠ

(7′) e-lat GAL? KI-tum GU? ana GE6 NA

(8′) MU-13 ZÍZ 11 Š[Ú]

(9′) MU-14 SIG 18 ŠU ⸢x⸣ […]

(10′) ina IGI GIŠ.R[ÍN UŠ …]
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Ǡ.Ǡ Translation

Obverse

(1) Year 1, Ne[buchadnezzar? …]

(2) Month II?, the 4(+x?)th? […]

(remainder lost)

Reverse

(1′) … […]

(2′) Year 12, Month I, the 24th, [first visibility]

(3′) Month IX, the 24th, 10 degrees in front of [the Single Star]

(4′) in Front of the Furrow, in front of the Furrow, it was station[ary. From the xth]

(5′) it moved back to the west. … Month XII, the 14th?

(6′) it passed the 1 (Star) of his Rump to the west and was stationary

(7′) above …

(8′) Year 13, Month XI, the 11th, la[st visibility.]

(9′) Year 14, Month III, the 18th … [first visibility. The nth]

(10′) in front of Lib[ra it was stationary.]
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Ǡ.ǡ Critical apparatus

Obverse

(1) Von Weiher read SIG after the year number, but Mars’s last visibility took place
in month II of that year and the planet was not visible again until month V. We
would in any case expect a king’s name after the year number in the first line of
the tablet and the traces in the copy are consistent with IdA[G.NÍG.DU.ŠEŠ] for
Nebuchadnezzar.

(2) The traces at the beginning of this line in the copy are consistent with the reading
GU4 for Month II, but my reading is based upon the expected date of Mars’s last
visibility and must be treated with caution.

Reverse

(2′) The sign at the end of this line appears to begin with three vertical wedges in the
copy and so may perhaps be either a distance measurement or a NA interval but in
the former case there does not seem to be enough space for a star name before the
end of the line and in the latter case we would expect IGI ‘first visibility’ to appear
before the NA interval. Perhaps the traces are simply a damaged IGI.

(3′–4′) There must be a star name written at the end of line 3′ and/or the beginning of
line 4′. On the given date, Mars was about 7 degrees to the east of the Normal Starγ Virginis ‘The Single Star in Front of the Furrow’, which is usually written DELE
šá IGI ABSIN. There is space at the end of line 3′ for DELE and line 4′ begins with
a šá. The damaged signs which follow the šá are most likely, therefore, to be read IGI
ABSIN, which is just about consistent with the traces in the copy. Following these
traces we have signs which von Weiher read TI-qé for a form of the Akkadian verb
leqû ‘to take away’. I cannot make sense of such a verb here and so propose to read
these signs as ina IGI ABSIN. This still problematical, however, as it would appear
to follow directly another statement of ina IGI DELE šá IGI ABSIN. It is possible
that the scribe here has mistakenly given the star name twice (reading the signs as
DELE 〈šá〉IGI ABSIN); alternatively, he may be giving a second, general statement
of the position of Mars as ‘in front of the (constellation) Furrow’. The broken text
at the end of line 4′ can be restored either TA x ‘From the xth’ or simply u ‘and’
referring to the following statement about the retrograde motion of the planet at
the beginning of line 5′.

(5′) Von Weiher read the beginning of this line as ana ŠÚ ½ SA DU-ik, but he copied an
AB sign rather than a DU sign. The signs as given in von Weiher’s transliteration do
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not make sense without emending the SA to a KÙŠ to give ana ŠÚ ½ KÙŠ DU-ik
‘it proceeded ½ cubit to the west’. However, at this time, Mars was moving retro-
grade (to the west as stated) and DU is normally only used for direct motion (to the
east). I suggest instead assuming that the sign read as ½ is a misreading of LAL and
we have the phrase ana ŠÚ LAL-sa ‘it moved back to the west’, a common phrase
in early observational texts (see, for example, SpTU IV 171 line 16). The following
signs remain problematical, however. It would be possible to take AB as ‘Month X’,
but I do not know how to then read the following IK sign. Mars did have its acrony-
chal rising around the ǠǦth of Month X, but acronychal risings are not normally
reported in texts from early in Nebuchadnezzar’s reign, and I see no way of reading
the IK sign as a day number followed by a sign (e.g. E) or phrase (e.g. ana ME E-a)
referring to acronychal rising.

(6′) The star GIŠ.KUN A ‘The Rump of the Lion’ (θ Leonis) is one of the Normal Stars
used in later astronomical texts. The star group 2 šá GIŠ.KUN-šú ‘2 (Stars) of his
Rump’, which presumably includes θ Leonis, appears in the standard list of 25 ziqpu
stars,9 and one might expect that the reference to the ‘1 (Star) of his Rump’, is a
mistake for ‘2 (Stars) of his Rump’.

(7′) The reading and interpretation of this line is very problematical. A reference to Mars
being above a star makes sense; however, at that time Mars was slightly to the west
and about 6 degrees below θ Leonis (a star with a very high positive latitude of
about 9.65 degrees). Thus, Mars must be above another star, as well as being belowθ Leonis. A plausible candidate would be χ Leonis. However, I am unsure how to
make a star name out of the signs in this line. Perhaps KI-tum is referring to the area
between the legs of the Lion, and we are to assume a missing UR before the sign
I read as GU (but note von Weiher reads SAL+UD for the signs I read as GU ana).

(8′) The traces of the sign at the end of this line are probably part of ŠÚ for ‘last visibility’
rather than ina as read by von Weiher. The gap between the day number and ŠÚ
suggests that Mars’s position on this day was not included in the observation report
and so the scribe has spaced out the signs to fill up the whole line.

(9′) Following the day number we would expect either IGI ‘first visibility’ or a reference
to the position of Mars. Von Weiher reads the sign KU plus some traces, which could
be the first part of ku-t[al] ‘back’ (the preserved traces following the KU would allow
for such a reading), but we would then expect ina before ku-tal ‘in the back of’ (ina
ku-tal is used in this context in the early observational text BM 41222 Side A II 7′).
Furthermore, von Weiher copied a ŠU not a KU sign. Nevertheless, ku-t[al] makes

9 Steele ǠǞǟǣ.
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more sense than ŠU here, so I have provisionally accepted this reading. On this date,
Mars was in the rear part of the Twins, so ‘back’ may refer either to a part of one
of the Twin’s anatomy or is used in the general sense to mean the rear part of the
constellation.

(10′) Von Weiher read the star name as GIŠ.K[UN] (θ Leonis) but Mars was at a longitude
of approximately 185 degrees at the time of its first station, which places the planet
in Libra. From the copy, a reading GIŠ.R[ÍN …] would be possible. The star is very
probably α Libra, a Normal Star called RÍN šá ULÙ ‘The Southern Part of the Scales’,
probably here written GIŠ.R[ÍN šá ULÙ].

ǡ Date

The reverse of the tablet records the following dated observations:

– Year 12 Month I Day 24 [first visibility]
– Year 12 Month IX Day 24 [first station] 10 degrees in front of γ Virginis
– Year 12 Month XII Day 14? second station near θ Leonis
– Year 13 Month XI Day 11 [last visibility]
– Year 14 Month III Day 18 [first visibility]

It is immediately apparent that the observations concern a planet with a synodic period
of a little over 2 years. This is sufficient to identify the planet as Mars. The distribution
of the dates of the synodic phenomena is also characteristic of Mars. Knowing that the
text contains observations of Mars, a search of the tables of the phenomena of Mars
computed by N. A. Roughton and kindly made available to the author,10 quickly shows
that only during the reign of Nebuchadnezzar II do the dates of the phenomena recorded
in the text agree with modern computation. This date is confirmed by comparing the
positions of Mars given for the observations of first and second station, which agree well
with modern computation.

Other characteristics of the text also argue for an early date: (ǟ) the use of degrees
rather than cubits for the measurement of celestial distances is rare and only found in
early observational texts, and (Ǡ) the writing GIŠ.RÍN rather than RÍN is much more
common in early texts rather than late texts.

10 For details of Roughton’s tables, see Roughton ǠǞǞǠ,
ǡǥǞ.
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Babylonian date Julian date Phenomena Computed date Difference

Year 12 I 24 23/5/593 BC First visibility 25/5/593 BC −2 days

Year 12 IX 24 14/1/592 BC First Station 5/1/592 BC +9 days

Year 12 XII 14? 2/4/592 BC Second Station 26/3/592 BC +7 days

Year 13 XI 11 17/2/591 BC Last visibility 13/2/591 BC +4 days

Year 14 III 18 24/6/591 BC First visibility 24/6/591 BC 0 days

Tab. ǟ A comparison of the observed dates of the synodic phenomena of Mars with those computed in
Roughton’s tables.

Ǣ The observations

Now that the date of the observations in SpTU V 266 has been established it is possible
to analyze the observations it contains. Tab. ǟ compares the fully preserved dates of the
observed phenomena with the results of modern computation. The dates of the observed
phenomena were converted to Julian dates using the tables of Parker and Dubberstein.11

Note that Parker and Dubberstein’s date may differ from the true Babylonian calendar by
one day; a one-day error, however, is insignificant for this analysis. Computed dates were
taken from Roughton’s tables. These tables were calculated for an observer in Babylon,
but the dates of the synodic phenomena should vary by no more (and usually much
less) than one day than these if the observations were made in Uruk. Any resulting one-
day error caused either by the visibility criteria or the date conversions is significantly
less than the uncertainty in the date of visibility phenomena caused by the day-to-day
variation in local observing conditions due to weather etc.

In general, the observed dates of visibility phenomena are in good agreement with
the computed dates, with a tendency for the computed dates to be slightly later for first
visibilities and slightly earlier for last visibilities, suggesting that Schoch’s visibility cri-
teria for Mars are slightly too high. In general, the differences between observed and
computed dates are of the same magnitude to those found by Britton in his analysis
of early the Mars observations from the time of Nebuchadnezzar on HSM 1899.2.112
and Walker in his analysis of the Saturn observations from the time of Kandalanu on
BM 76738+ 76813.12 The dates of the stationary points are considerably less accurate,
both late by several days. The lateness of these observations no doubt reflects the diffi-
culty in determining exactly when Mars changes from direct to retrograde motion; for

11 Parker and Dubberstein ǟǧǣǤ. 12 Britton ǠǞǞǢ; Walker ǟǧǧǧ. See also de Jong
ǠǞǞǠ, a study of the Saturn observations on
BM ǥǤǥǡǦ+ ǥǤǦǟǡ and SpTU IV ǟǥǟ.
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several days around the station, Mars moves very slowly (less than about 0.15 degrees
for 5 days before and after the station).

Only one detailed measurement of the position of Mars at a synodic phenomenon
is fully preserved: Mars was 10 degrees in front of γ Virginis on the ǠǢth of Month IX
of year 12. According to the NASA Horizon online ephemeris, Mars’s longitude was
146.77 degrees and its latitude +4.04 degrees on this date. The longitude and latitude
of γ Virginis at this period was 154.40 degrees and +3.01 degrees respectively.13 Various
studies have shown that the term ‘in front of’ refers approximately to a displacement
eastwards in celestial longitude.14 The computed longitude difference between Mars andγ Virginis on the date of the observation is 7.63 degrees, slightly less than the 10 degrees
stated in the observation report; it is not unreasonable to suppose that the 10 degrees
stated in the text is a rounded figure.

ǣ Conclusion

SpTU V 266 provides further evidence that the practice of regular observation of plan-
etary synodic phenomena was already well established by the early sixth century. The
observations contained in this text are recorded in a remarkably similar style to later
texts; although there are small differences in terminology, especially in the names of
stars, the basic format of a planetary observation report as it existed in the early sixth
century BC continued until the Seleucid period. This text, the other early planetary
texts, and the existence of compilations of lunar eclipse observations and of lunar six
data from this period,15 also show an interest in the systematic collection of astronomi-
cal data concerning one planet or lunar phenomena, which must surely be linked to the
development of predictive methods at this period.16

13 The coordinates of γ Virginis were taken from Sachs
and Hunger ǟǧǦǦ, ǟǦ, for the year −600.

14 See most recently Jones ǠǞǞǢ.

15 For the lunar eclipse texts, see Hunger, Sachs, and
Steele ǠǞǞǟ, Nos. ǟ, Ǥ, and ǥ; and for the lunar six
texts, see Huber and Steele ǠǞǞǥ.

16 On this topic, see, for example, Brack-Bernsen ǟǧǧǧ;
Britton ǠǞǞǦ; Steele ǠǞǞǞ; Steele ǠǞǟǟ; and, in gen-
eral terms, Brown ǠǞǞǞ, ǟǤǟ–ǠǞǥ.
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Gerd Graßhoff and Erich Wenger

The Coordinate System of Astronomical Observations
in the Babylonian Diaries

Summary

A large number of the astronomical observations in the Babylonian diaries are occurrences
of close conjunctions of moving objects, such as the Moon or planets with bright stars, in
the vicinity of the ecliptic. In ǟǧǧǣ, Graßhoff proposed the hypothesis that the observations
fit best when one assumes that the Babylonians used an ecliptical coordinate system. In the
following we present a test that excludes an equatorial coordinate system as an alternative
system of measurement.

Keywords: Babylonian astronomy; observations; coordinate system; astronomical diaries;
lunar observations; C. Ptolemy.

Ein Großteil der astronomischen Beobachtungen in den Babylonischen Tagebüchern han-
delt von Konjunktionsereignissen sich bewegender Objekte, wie dem Mond oder Planeten
mit hellen Sternen in der Nähe der Ekliptik. ǟǧǧǣ argumentierte Graßhoff, dass die Beob-
achtungen am meisten Sinn ergäben, wenn man davon ausginge, dass die Babylonier ein
ekliptikales Koordinatensystem nutzten. Im Folgenden stellen wir einen Test vor, der ein
äquatoriales Koordinatensystem als alternatives Messsystem ausschließt.

Keywords: Babylonische Astronomie; Beobachtungen; Koordinatensystem; astronomische
Tagebücher; Mondbeobachtungen; K. Ptolemaios.
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ǟ Introduction

In ǟǧǦǥ Otto Neugebauer suggested that Gerd Graßhoff reanalyze what seemed to be
observational reports in the Babylonian astronomical diaries, which were being pre-
pared for publication by Hermann Hunger on the basis of the notes of the late Abraham
Sachs. Hunger kindly gave Graßhoff access to his text files so that he could process the
astronomical data. Thus, Graßhoff undertook a comparative analysis of the calculated
positions of the Moon of the first two volumes of the Astronomical Diaries using the just
published algorithms of Chapront-Touzé1. Until then, no one had carried out a system-
atic interpretation of the observational reports, which had fueled much debate between
Neugebauer and Noel Swerdlow at Princeton, and which had led them to question
whether the Astronomical Diaries had anything in common with the ACT. During one
particular summer of intense discussion on the difficulties of interpreting the reports,
they had even argued about whether the Babylonian observers had used any modern
astronomical coordinate system at all. In ǟǧǧǞ the early results showed that the obser-
vations of planetary configurations had been recorded using the ecliptical coordinate
system. Swerdlow promptly took up the challenge and investigated the implications for
Babylonian planetary theory.2 The results concerning the Babylonian coordinate system
were presented at a Dibner Institute workshop at the MIT in Boston in ǟǧǧǣ. As statis-
tical tests could not distinguish clearly between ecliptical and equatorial coordinates,
the late John Britton suggested that future researchers look for properties in the data
that would yield an experimentum crucis between both coordinate systems. This paper is
a response to his suggestion.

The three volumes of late Babylonian texts, edited by Abraham Sachs and Hermann
Hunger, and published by ǟǧǧǤ,3 contain the observations of more than 5 000 planetary
and lunar configurations. Observations of this type record close approximations of the
Moon or planets with bright stars in the vicinity of the ecliptic. According to Graßhoff,
the general form of the observed configurations can be tabulated as shown in Tab. ǟ.

A number of the observational reports mention more than one topographical rela-
tionship and their quantity. These expressions have been translated as ‘low to the south’,
‘high to the north’, ‘back to the west’, and ‘passed to the east’, followed by another quan-
titative value. A schematic form of these expressions is:

at t: O1 stands [‘in front of’ / ‘behind’] O2 with D, low to the south with N.

‘Low to the south’ and ‘high to the north’ measures ecliptical differences. The first object
stands in the north if its difference of latitudes with the second object is positive.

1 Chapront-Touzé and Chapront ǟǧǧǟ.
2 Swerdlow ǟǧǧǦ.

3 Sachs and Hunger ǟǧǦǦ–ǟǧǧǤ.
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standard back to the west passed to the east balanced further specification

ecliptical difference of latitude, β1 > β2, D1 = β1 − β2

above small difference
of longitude

difference of
longitudeλ1 < λ2,D2 = λ2 − λ1

difference of
longitudeλ1 > λ2,D2 = λ1 − λ2

very small
difference of
longitude

—

ecliptical difference of latitude, β1 < β2, D1 = β2 − β1

below small difference
of longitude

difference of
longitudeλ1 < λ2,D2 = λ2 − λ1

difference of
longitudeλ1 > λ2,D2 = λ1 − λ2

very small
difference of
longitude

—

standard high to the north low to the south balanced further specification

ecliptical difference of longitude, λ1 < λ2, D1 = λ2 − λ1

in front of undetermined
difference of
latitude

difference of
latitudeβ1 > β2,D2 = β1 − β2

difference of
latitudeβ1 < β2D2 = β2 − β1

very small
difference of
longitude

occasionally with
planets:
to the west

ecliptical difference of longitude, λ1 > λ2, D1 = λ1 − λ2

behind undetermined
difference of
latitude

difference of
latitudeβ1 > β2,D2 = β1 − β2

difference of
latitudeβ1 < β2,D2 = β2 − β1

very small differ-
ence of latitude

occasionally with
planets:
to the east

Tab. ǟ Summary of the meaning of the relational expressions (rows) and the additional remarks (columns) used;
for configurations between celestial bodies O1 und O2 with ecliptical coordinates λ1, β1 and λ2, β2. The measure-
ment is denoted as D1, accompanied by D2 in the case of dual coordinates. Cf. Graßhoff ǟǧǧǧ.
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Fig. ǟ Two hypothetical objects
displayed in a distance relation-
ship using an abstract coordinate
system.

Ǡ Babylonian astronomical observations of planetary and lunar
configurations

Ǡ.ǟ Measuring coordinate differences

Let us begin with looking at an abstract generalization of the observation of a config-
uration of two objects with dual coordinates in a measuring plane (x,y) as shown in
Fig. ǟ. The position of the second (slower or fixed) object is marked in the center of
the observation window by a cross. The positions of eight other objects are marked by
bullet points, with their respective coordinate differences. In standard Babylonian for-
mulation they would be mentioned as the first objects. Their position follows a square
of a length of one degree around the cross in the center. The standard form of a config-
uration statement is:

‘At date D, the second object (e.g. the Moon) is situated at distance A below
object 2 (e.g. the star Beta Tauri) and at distance B towards the east.’

As in the aforementioned example, we here have the simulation of a coordinate dif-
ference (A, B) of two hypothetical objects defined by their distance. The coordinates
themselves refer to a coordinate system, and the coordinate differences are indicated
on the measuring plane (x,y). It is our goal to identify which coordinate system the
Babylonians used.
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Fig. Ǡ The Sun moving along the ecliptic.

Ǡ.Ǡ Comparison of observations using recalculated positions

The procedure for identifying the coordinate system is based on a method which uses
the systematic errors that occurred in the data when the coordinate system assumed to
have been used by the Babylonians to take their measurements is, in fact, the wrong one.
As the characteristic errors for an assumed measurement procedure usually appear as sys-
tematic errors in the obtained data differences, we, therefore, analyzed the observations
by comparing them with modern recalculations. The coordinate differences between
the observed values and the recalculated values can give us clues about the correctness
of the assumed coordinate system, as such differences appear much the same in different
coordinate systems, although they are not uniform for different regions of the sky.

If the Babylonian observations had been recorded as angular differences in a coor-
dinate system that differs from the coordinate system we used to recalculate the differ-
ences, then characteristic errors, which vary in size and direction across the sky, would
occur. It is, therefore, not enough to take the mean deviations of the calculated positions
of the stars for all the observations made (irrespective of their position in the sky) or to
examine statistically their dispersion. Because of the variations in coordinate differences,
one cannot simply use standard fits to identify the underlying coordinate system.

Ǡ.ǡ Systematic errors

The annual path of the Sun follows the ecliptic, and is plotted as a line of dots in Fig. Ǡ.
The ecliptic crosses the celestial equator at the spring (0◦) or autumn equinoxes (180◦).
All our calculations refer to the equinoctial points and solstices at the time of observa-
tion. When we could compare the coordinate differences originally recorded using an
equatorial coordinate system with the recalculated positions within an ecliptical refer-
ence system, we introduced a specific systematic error.
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First, we show the effect with simulated data. Let us superimpose the zero points of
the equatorial and ecliptical celestial coordinate systems in Fig. ǡ: the left column shows
the position of stars plotted using the equatorial coordinate system. It should be noted
that the values increase from right to left.

Now, if the observations had been made in one of the coordinate systems, and the
positions of the two objects had been calculated in the other coordinate system, then
typical systematic errors should have occurred:

– The coordinate systems would have rotated against each other at the spring and
autumn equinoxes. The difference vectors would have rotated as well.

– The coordinate systems would have lain parallel at the summer and winter solstices.
And there would be no differences in the measurements of angular distances at the
solstices.

At the equinoxes the ecliptic is inclined maximally towards the equator; the correspond-
ing directions of the angular distances between the two celestial objects incline by the
same degree.

The aim of our procedure is to determine whether such a systematic turn can be de-
tected in the reconstructed data or not. If the angular distances recorded in the observa-
tional reports are compared with the recalculated differences using the wrongly assumed
coordinate system, a characteristic rotation would show up in the data. Therefore, the
method should clearly falsify the incorrect assumptions made about the assumed mea-
surement procedures. If the right coordinate system was chosen for the recalculations,
then the systematic rotational error should not appear. In order to simulate the effects
of the presumed coordinate systems, we will now take a look at the positions of pairs of
celestial bodies in their respective regions of the sky.

Ǡ.ǡ.ǟ True equatorial system compared with equatorial data

First, we test the assumption that the observations were based on the equatorial system
by transferring the abstract observations from Fig. ǡ to the equatorial coordinate system.
This is done four times at the aforementioned key positions. We then distribute eight
objects in the square around object two in the middle column, each with an angular
difference of 1◦ in one of the coordinates (left of Fig. ǡ). The corner coordinates of the
respective points are situated at a distance of 1◦ up or down and 1◦ to the right or left
from the reference object in the middle of the square. When we calculated the positions
of all the celestial objects using the equatorial coordinate system, we got a figure identical
to the one at the left-side diagram of Fig. ǡ. In general, rotations would only occur if we
used the wrong coordinate system to recalculate the positions.
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Fig. ǡ Left column: coordinate differences on all four cardinal points of an equatorial system. Middle column:
coordinate differences on all four cardinal points of an ecliptical system. Right column: differences of the dis-
tances. Rows from top to bottom: spring equinox (SE), summer solstice (SS), autumn equinox (AE), winter sol-
stice (WS).
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Ǡ.ǡ.Ǡ True equatorial system compared with ecliptical data

If we now calculate the same object using the corresponding ecliptical coordinate sys-
tem, Fig. ǡ shows that no discernible deviations can be noticed in the solstices. How-
ever, there is a noticeable rotation at the equinoxes, which falsifies the hypothesis that
the original observations were made using an ecliptical coordinate system.

Ǡ.ǡ.ǡ True ecliptical system compared with ecliptical data

We will now assume that the Babylonians made their measurements using the eclipti-
cal system, and we will then calculate the deviations between both the ecliptical and
the equatorial recalculations. If the coordinate system used for making the observations
and the recalculations are the same, then no noticeable rotation should appear at the
equinoxes, and no rotation at the solstices.

If we look for the vernal point at the top row diagram, the shaft ends of the arrows
stand where the celestial bodies are located in accordance with the equatorial coordinate
system of Fig. ǡ, whereas the arrowheads indicate the shifted position of the object’s
coordinates according to the recalculated ecliptical coordinate system.

As the Babylonian observations recorded the angular distances between two objects,
the systematic deviations of the angular distances systematically superimposed the mea-
sured values: there are hardly any differences at the solstices, but there are rotations at
the vernal and autumnal points.

It is important to note that we depict the differences between the calculated and
observed positions using the measuring system (x,y) and not using a celestial coordi-
nate system. By way of example: the greater the distance between object 1 and object 2
in the top row illustration, the greater the deviation will be. At the solstices, the axes of
the two coordinate systems are parallel to each other and so there should be no devia-
tions. The systematic rotation thus only appears relatively in the measuring system, not
absolutely in the sky. Hence, it is only visible when comparing Babylonian observations
with distances, recalculated using different test coordinate systems.

Ǡ.ǡ.Ǣ The ecliptical coordinate system

The systematic errors will be reversed when the assumed coordinate system is ecliptical,
and the equatorial system is used for calculating the positions.

Again, the actual differences of the eight objects around the reference object in the
middle are only shifted by 1◦ in a coordinate and thus, in sum, all these deviations result
in a square distribution around the second object.
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If we superimpose the equatorial coordinate system over the actual ecliptical co-
ordinate system, the typical rotations of the differences occur at the equinoxes – only
in reverse. The values of the angular distances rotate clockwise at the vernal point and
counterclockwise at the autumnal point. This is a general definition of the test method.
Thus, the test method is defined in general terms.

Ǡ.Ǣ Test procedure

Because of these complementary systematic errors, we can set up a test procedure for
determining which coordinate system was used.

ǟ. Based on the observed angular distances, we calculate the positions of object 1, in
both the equatorial and in the ecliptical systems. We compare these positions using
state-of-the-art coordinate calculations of the objects. We then plot the deviations
in the measuring system (x,y).

Ǡ. If the Babylonians did their measurements using the equatorial system, but we eval-
uated their findings using the ecliptical system, we should be able to observe a faulty
counterclockwise rotation at the vernal point and a clockwise rotation at the autum-
nal point. No rotations should appear at the solstices.

ǡ. If the Babylonians made their measurements using the ecliptical system, but we eval-
uated their findings using the equatorial system, then we should observe a faulty
clockwise rotation at the spring point and a counterclockwise rotation at the au-
tumn point. No rotations should appear at the solstices.

Ǣ. If we made our comparisions using the same coordinate system as the Babylonians,
there should be no rotations at all.

We thus arrive at a sensible testing procedure (Tab. Ǡ).

ecliptically calculated equatorially calculated

ecliptical Babylonian no rotations SE: clockwise|AE: countercl.

equatorial Babylonian SE: countercl.|AE: clockwise no rotations

Tab. Ǡ Decision criteria for best-fitting coordinate system.
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We thus obtain two different tests that enable us to ascertain which coordinate sys-
tem the Babylonians used. Based on the observed angular distances of the two recorded
celestial objects, we calculate their positions twice: once using the ecliptical system, once
using the equatorial system. The distribution of the findings depicted in Tab. Ǡ reveals
why one should apply the systems that the Babylonians used.

Ǡ.ǣ With stochastic errors

Before we analyze the real data, let us look at the effect of random errors in the observa-
tions, which occurred when the Babylonian took their measurements.

Ǡ.ǣ.ǟ Equatorial coordinate system for observation

The observations of the Babylonian astronomers show small, random errors, as is the
case for all empirically measured values. These so-called stochastic errors randomly in-
fluence the measured positions of the two objects. The question then arises as to whether
these statistical errors overlap the systematic errors in such a way that we can no longer
discern the rotations.

In Fig. Ǣ, the eight positioned objects show a random error of deviating from 1◦ inx and y. The first example is based on the equatorial coordinate system and the random
errors concerning the equator are superimposed on both coordinate systems.

If we now calculate the positions of the objects using the ecliptical coordinate sys-
tem, even if the observations were made equatorially, then the systematic error of the
aforementioned discussion overlaps with the stochastic error of the individual observa-
tion. As a result, we can discern the meanwhile well-known rotation of the deviations
of the angular distances of both objects.

Ǡ.ǣ.Ǡ Ecliptical coordinate system for observation

In the case of the observation of the positions in the ecliptical coordinate system and the
subsequent calculation of the position in the equatorial coordinate system, we can ob-
serve a similar superimposition with stochastic errors. The only difference is that in this
case the systematic errors rotate in the reverse direction in the solstices. In the solstices
only random errors are visible.

If, in this case, no rotation appears, but we can could observe stochastic errors in
such a dimension that a rotation of the coordinates is visible, then the calculated eclip-
tical coordinates in fact match the observed data.
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Fig. Ǣ Superimposed stochastic errors plus systematic errors. Left column: no systematic errors. Middle column:
systematic from recalculated ecliptical instead of equatorial system. Right column: equatorial instead of ecliptical
coordinate systems. Rows from top to bottom: spring equinox (SE), summer solstice (SS), autumn equinox (AE),
winter solstice (WS).
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Fig. ǣ Double coordinate obser-
vations of coordinate differences.

Ǡ.Ǥ Analytical findings

In the following, we investigate the measurements of configurations with double coor-
dinates. Outliers with a deviation of more than 5◦ have been excluded. The number of
observations comprises 595 measurements. If we transfer the observed angular distances
to the second object, which is situated at the origin of the measuring system, we get the
distribution shown in Fig. ǣ. It can be seen clearly that the Babylonians measured the
northern and southern distances in latitude for greater distances than in the case of the
longitudes.

This is in fact a consequence of the moment when the measurement was made: The
moment is recorded when the first object passed the second object above the horizon,
with as little distance as possible – a movement which can be observed. As the solar
system objects, including the Moon, move along the ecliptic, the smallest distance to
the second object is determined by two aspects for both coordinates: the minimal lati-
tude is given by the ecliptical difference in latitude of both objects and varies depending
on the ecliptical latitude of the first object. The minimal length is determined by the
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observation window, which was just big enough to make the measurement of the passage
possible. It is due to these aspects that both measuring coordinates show a different
dispersion in the measurement area. However, this does not mean that both coordinates
comprise differently sized measurement errors. The measuring accuracy could still be
similar for both coordinates.

We have now calculated the positions of the celestial bodies in ecliptical and equa-
torial coordinates in order to analyze the characteristics of the data. We have calculated
the coordinate differences for our measurement system (x,y), which can be deducted
from these data.

Using four rectangles measuring 90◦× 180◦, we have chosen observations for which
the second object is situated within this field. Fig. Ǥ comprises the findings: the left-hand
column shows the calculated ecliptical coordinate differences starting from the vernal
point (in the uppermost row) to the winter solstice in the fourth row. The right column
shows the coordinate differences for the equatorial calculation for the same regions in
the sky. Let us first look at the right column. In the uppermost row, we calculate the co-
ordinates for the vernal point, using equatorial coordinates. We receive a characteristic
rotation in a clockwise sense. If we calculate the errors in the ecliptical coordinate system
in the first column, no rotations appear. The findings for the autumnal point show the
same results. For the calculation in the equatorial coordinate system, the errors appear as
counterclockwise rotations. The errors rotate counterclockwise as a result of a systematic
error due to the fact that the equatorial coordinate system has erroneously been applied.
As can be seen, the calculation of the coordinate difference for the ecliptical calculation
shows no rotations. These findings unambiguously establish that the Babylonians used
the ecliptical coordinate system to record their data. The reported quantities of the con-
figurations of two celestial objects measure coordinate differences.

ǡ Further corroborating findings

ǡ.ǟ Magnitude of error vectors

The orientation of the systematic error vectors is the crucial argument for deciding
which coordinate system was used by the Babylonians. Nevertheless, the magnitude of
the total error vectors (i.e. systematical plus stochastic errors) should support this argu-
ment. In Fig. ǥ we compiled the errors, once assuming the ecliptical and once assuming
the equatorial system.
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Fig. ǥ Distribution of positional errors: if (a) the recalculated positions are given in equatorial coordinates; or
(b) in ecliptical coordinates. Note that the distribution is denser when ecliptical coordinates are used, which is
equivalent to a better fit of the recalculated and the documented data.

The corresponding RMS errors are found in Tab. ǡ and were calculated by (n=595):

RMS error =

√

√

√

√

1n
n
∑

i=1

(xi,observed − xi,computed
)2

equatorial ecliptical error decrease

x-direction 2.05◦ 1.51◦ −26.4%

y-direction 1.57◦ 1.27◦ −19.1%

Tab. ǡ RMS errors in x- and y-
direction, assuming the ecliptical
and equatorial coordinate system,
respectively.

ǡ.Ǡ Special cases

In Fig. Ǧ we display a Babylonian observation that reads: ‘in the last part of the night the
moon is 5◦ above mars and 0.5◦ passed to the east’ (observation no. 5975). Calculated in
the ecliptical system, the Moon (dots) is always East from Mars (center cross) from the
first sight possible of the Moon (Moonrise) until the last sight possible (Sunrise). Calcu-
lated in the equatorial system, however, the Moon is never East but always West of Mars
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Fig. Ǧ Observation No. ǣǧǥǣ.
Cases of different relational con-
figurations depending on the
compared coordinate system.

throughout the possible time of visibility. Thus, if the Babylonian used the equatorial
system, they must have confused the directions East and West.

Now, there are 30 observations, which were coincidentally made in one of the four
quadrants built by the equatorial and the ecliptical coordinate axes (see Fig. Ǧ). 25 of
these observations can be explained in both systems, due to the uncertainty of the ob-
servation time, whereas five observations (like the one mentioned) cannot. For each and
every of these five observations, the ecliptical system fits, whereas the equatorial doesn’t.
So, if we assume the equatorial system as correct, we would have to accept that the
Babylonians confused the directions East-West and North-South exclusively for these
five observations. If we assume the ecliptical system as correct, all indications of direc-
tions (including the 25 others) are correct.

ǡ.ǡ Other ancient witnesses

Babylonian astronomy strongly influenced Ptolemaic astronomy, particularly through
the work of Hipparchus, in whose Commentary on the Phenomena of Aratus and Eudoxus we
find extensive usage of Babylonian terminology.4 Ptolemy referred to two observations

4 Cf. Neugebauer ǟǧǥǣ, Ǡǥǧ–ǠǦǟ, ǡǞǢ, ǣǢǢ, and ǣǧǟ–
ǣǧǡ.
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Fig. ǧ Mercury’s approximate position relative to the stars, according to Ptolemy’s description.

of Mercury that seem to be of Babylonian origin,5 and used them to derive his planetary
model. He quoted the two observations without fully converting them to the Greek
metrological system:

In the ǥǣth year in the Chaldean calendar, Dios 14, at dawn, [Mercury] was half
a cubit [ca. 1◦] above [the star on] the southern scale [of Libra]. Thus at that
time it was in a 14 1

6
◦, according to our coordinates. […]

In the Ǥǥth year in the Chaldean calendar, Apellaios 5, at dawn, [Mercury] was
a half a cubit [ca. 1◦] above the northern [star in the] forehead of Scorpius (β).
Thus at that time it was in b 2 1

3
◦, according to our coordinates.6

See Fig. ǧ for the computation of Mercury’s position relative to the stars for the afore-
mentioned dates.

Ptolemy paraphrased both observations in the form of topographical relationships
‘object 1 above object 2 by X cubits (Babylonian: kù̌s)’, which is clear proof of their
Babylonian origin. Even more interesting are the details of his evaluation. The quantities
are measurements of the differences in latitude between Mercury and the particular star.
Ptolemy, however, used this observation to determine planetary longitude. How did he
arrive there?

5 Cf. Neugebauer ǟǧǥǣ, ǟǣǧ.
6 Ptolemy, Almagest Book IX, ch. ǥ, cited from Toomer

ǟǧǦǢ, ǢǣǠ. The omission […] and the insertion in

round brackets (‘β’) are made by the authors, all
other bracketed insertions were added by Toomer.
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If he reduced the stellar longitudes for the epoch of the observations, according
to his theory he had just to subtract the value for the precession: 3◦ 50′ for 373 years
in the case of the first observation and 4◦ for 381 years for the second observation.7 In
the star catalog of the Almagest, β Scorpii has a longitude of b 6◦ 20′ and α Librae
a longitude of a 18◦. In the second case, the resulting longitude would be a little too
large. It is plausible that Ptolemy did not reduce the longitudes from the star catalog,
but used Hipparchus’ value or, alternatively, that of the Babylonian astronomers, and
then added the precession constant to these values.

Independent of the exact derivation of the longitude, it is remarkable that Ptolemy
assumed that Mercury and the stars have the same longitude. He seemed to find the mea-
sured coordinate of half a kù̌s unimportant to the calculation, which demonstrates that
he interpreted the Babylonian report in two ways:

ǟ. The measured topographical relationship is a coordinate value, e.g. either longitude
or latitude.

Ǡ. Since he identified the other coordinate with the longitude, the topographical re-
lationships need to be understood in the framework of the ecliptical coordinate
system.

Ptolemy took these excerpts from Hipparchus, who had extensive access to Babylonian
ideas.8 Without a doubt Ptolemy fully understood the meaning of the Babylonian ob-
servation reports.

Ǣ Conclusion

At the time of the first publication of the Babylonian diaries by Hermann Hunger, it
was completely unclear whether the observations of the moon passages along the stars
or planets were at all measured, and if they were, which astronomical reference system
had been applied. In ǟǧǧǣ, the research results on Babylonian astronomical diaries were
presented at the Dibner Institute in Boston. According to these results, the ecliptical
system has been ‘diagnosed’ to be the system that matches the documented data best.9

7 Note that Ptolemy uses a precession constant of one
degree per one hundred years, which is much too
small.

8 I have purposefully avoided referring to ‘sources’, al-
though it is highly probable that Hipparchus had
comprehensive access to either original or tran-

scribed Babylonian sources, considering the wealth
of Babylonian concepts that he utilized. Cf. Toomer
ǟǧǦǢ.

9 Alexander Jones extended the testing of the hy-
pothesis to the case of configuration observations
of planets in Jones ǠǞǞǢ.
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A more elaborate argument has been developed in the article presented here. This
argument tries to examine to what extent the assumption of a specific coordinate sys-
tem would generate characteristic errors in the statistical data, and whether these errors
would rule out the application of such a coordinate system. This elimination procedure
is very specific and statistically significant, and surpasses the levels of significance of
usually applied evaluation criteria. The comparison of the two main hypotheses for the
reconstruction of the Babylonian coordinate system presented here show clear differ-
ences with regard to their exclusion criteria. The equatorial coordinate system creates
specific rotation effects in the reconstructed quantitative data, which change their ro-
tation direction according to the celestial quadrant. The rotational quadrants can be
identified in the database. Thus, the configuration data of the Babylonian diaries was
not recorded in an equatorial system, as the alternative ecliptical system does not show
these rotation effects.

This evidence, together with the earlier research results, strongly supports the hy-
pothesis that the Babylonian astronomers either directly observed or calculated passages
in the ecliptical coordinate system and systematically noted down their observations on
a day-to-day basis.
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Teije de Jong

On the Origin of the Lunar and Solar Periods in
Babylonian Lunar Theory

Summary

In this investigation, I sketch the way in which Babylonian astronomers may have derived
the basic parameters of their lunar theory. I propose that the lunar velocity period of 6247
synodic months which underlies the construction of functions Φ and F of system A is de-
rived by fitting a multiple of the Saros period of 223 synodic months within an integer
number of solar years using the Ǡǥ-year Sirius period relation. I further suggest that the
lunar velocity period of 251 synodic months used to construct function F of system B is a
direct derivative of the ǤǠǢǥ-month period. I also briefly discuss the origin of the periods
of the solar velocity function B (of system A) and of the solar longitude function A (of sys-
tem B) suggesting that the periods of these functions may have been derived from a refined
version of the Ǡǥ-year Sirius period. I finally discuss the timeframe of the possible stepwise
development of these early lunar and solar functions.

Keywords: History of science; history of astronomy; Babylonian astronomy; Babylonian lu-
nar theory; Babylonian lunar and solar periods.

In dieser Untersuchung skizziere ich, auf welche Weise babylonische Astronomen die grund-
legenden Parameter ihrer Mondtheorie möglicherweise abgeleitet haben. Die Mondgesch-
windigkeitsperiode von 6247 synodischen Monaten, die der Konstruktion der Funktio-
nen Φ und F des Systems A unterliegt, sind dadurch abzuleiten, dass man ein Vielfaches
der Sarosperiode von 223 synodischen Monaten unter Verwendung der Ǡǥ-jährigen Siri-
usperiode in eine ganzzahlige Anzahl von Sonnenjahren einpasst. Des Weiteren schlage
ich vor, dass die Mondgeschwindigkeitsperiode von 251 synodischen Monaten, die für die
Konstruktion von Funktion F des Systems B genutzt wird, ein direktes Ergebnis der Peri-
ode von 6247 Monaten ist. In aller Kürze diskutiere ich auch die Ursprünge der Perioden
der Sonnengeschwindigkeitsfunktion B (des Systems A) und der SonnenlängenfunktionA (des Systems B) und schlage vor, dass die Perioden dieser Funktionen eventuell aus ei-
ner präzisierten Version der Ǡǥ-jährigen Siriusperiode hervorgehen. Abschließend wird der

John Steele, Mathieu Ossendrijver (eds.) | Studies on the Ancient Exact Sciences in Honor of
Lis Brack-Bernsen | Berlin Studies of the Ancient World ǢǢ
(ISBN ǧǥǦ-ǡ-ǧǦǟǤǡǦǢ-ǣ-ǣ; URN urn:nbn:de:kobv:ǟǟ-ǟǞǞǠǢǤǟǧǞ) | www.edition-topoi.de
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Zeitrahmen der möglicherweise schrittweisen Entwicklung der frühen Mond- und Sonnen-
funktionen diskutiert.

Keywords: Wissenschaftsgeschichte; Geschichte der Astronomie; Babylonische Astrono-
mie; Babylonische Mondtheorie; Babylonische Mond- und Sonnenperioden.

I have profited from discussions with and from critical remarks of many colleagues of whom
I wish to mention here Lis Brack-Bernsen, the late John Britton, Alex Jones, Mathieu Os-
sendrijver and John Steele.

ǟ Introduction

One of the most basic questions in the field of Babylonian astronomy, “How did the
scholars get from the observations as recorded in the Astronomical Diaries1 to the theo-
retical computations as we know them from the ACT-type2 texts”, is still incompletely
answered. What we do know is that the development of Babylonian lunar and planetary
theory is based on periodicities in the orbital motion of the Sun, Moon, and planets.
From the observed periods longer theoretical ‘great’ periods (of order several centuries
up to about one millennium) were constructed by linear combination, and using these
‘great’ periods the observed variations in orbital velocity were cast in strictly periodic
step functions and/or zigzag functions. These functions are based on linear difference
schemes and involve extensive computation. The specific choice of the parameters char-
acterizing these functions appears often to have been based on arithmetic convenience
with the purpose of simplifying the calculations.3

In this paper I will limit myself to Babylonian lunar theory and I will concentrate on
an investigation into the observational basis of the derivation of the basic periods used
in the computation of the angular velocity of the Moon (column F in the ephemerides
of systems A and B) and of the Saros function Φ (system A). It was through the work
of Lis Brack-Bernsen4 and several of her lectures that I became initially interested in –
and after a while fascinated by – function Φ and its secrets and intricacies. This paper

1 Sachs and Hunger ǟǧǦǦ–ǠǞǞǟ; henceforth referred
to as the Diaries.

2 Astronomical Cuneiform Texts (Neugebauer ǟǧǣǣ);
henceforth referred to as ACT.

3 This is most obvious in the choice of the values for
the angular velocities of the Sun and the planets in
the ephemerides of system A. There we find that
the angular velocities have different values in differ-

ent sections of the Zodiac which are related by sim-
ple ratios. For instance in ephemerides where the
360◦ zodiac is divided into two sections we find for
Saturn angular velocities in the proportion 21 : 25,
for the Sun 15 : 16, and for Jupiter 5 : 6 (see Aaboe
ǠǞǞǟ, Tab. ǡ).

4 Brack-Bernsen ǟǧǧǥ.
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may be considered as a progress report of an investigation into the early development
of Babylonian lunar theory which grew out of this fascination.

The time frame for the early development of Babylonian lunar theory is constrained
by the lunar text BM 36737+ 47912 and its duplicate BM 36599 discussed by Aaboe and
Sachs.5 This text contains full-fledged versions of functions F1 and Φ1 of lunar system A
(the index 1 refers to functions evaluated at New Moon, while index 2 refers to Full
Moon) for the years 474–457 BC and may have been written shortly afterwards. Func-
tions Φ and F of system A are zigzag functions based on the same long period of 6247
synodic months. Lunar system A contains one more function with this same period:
function G which gives a first approximation to the excess in days of the synodic lunar
month over 29 days.

The other text discussed by Aaboe and Sachs is BM 36822 (+ 27022).6 It also con-
tains fully developed versions of functions F1 and Φ1 computed for 398 BC and in ad-
dition a crude system A like function for the solar longitude, as well as primitive ver-
sions of functions G, C (length of daylight) and M (time between syzygy7 and sunset/
sunrise).

So it seems that functions F (lunar velocity) and Φ (excess time of one Saros of
223 months over 6585 days) were fully developed by the middle of the fifth century BC
and that the solar longitude function B of system A was still under development around
400 BC. The earliest lunar ephemeris known so far (of system A) dates from 319 BC,8

while the last known Babylonian lunar ephemeris (also of system A) dates from 49 BC
(ACT 18).

Even a cursory treatment of Babylonian lunar theory is outside the scope of this pa-
per but a short summary of its main features seems appropriate. For a detailed treatment
the reader may be referred to Neugebauer’s History of Ancient Mathematical Astronomy.9

Lunar ephemerides come in two varieties, called system A and system B. In system A
the lunar (solar) longitude at syzygy (function10 B) is represented by a step function; all
other functions are represented by (modified) zigzag functions. In system B all functions
are represented by (modified) zigzag functions; the periods adopted for the construction
of these functions in system B differ from those adopted in system A.

Representative examples of lunar ephemerides are ACT 5 (New Moons for S.E. 146–
148 according to system A) and ACT 122 (New Moons for S.E. 208–210 according to

5 Aaboe and Sachs ǟǧǤǧ.
6 Aaboe and Sachs ǟǧǤǧ.
7 The term syzygy refers to the conjunction or opposi-

tion (Full Moon) of the Sun and Moon.
8 Aaboe ǟǧǤǧ.

9 Neugebauer ǟǧǥǣ, ǢǥǢ–ǣǢǞ; henceforth referred to
as HAMA.

10 In this paper I will often not discriminate between
functions and columns. For example function B
stands for the mathematical function reproducing
the arithmetical sequence of numbers displayed in
column B of the ephemeris.
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system B). The ultimate goal of the construction of lunar ephemerides was to predict
a number of lunar phenomena:

– length of the lunar month (columns G–K)
– lunar eclipse magnitudes (columns E and Ψ)
– date and time of syzygy (columns L–N)
– duration of first and last visibility of the Moon (columns O–P)

Prerequisites for the computation of these quantities are the function Φ which serves as
an auxiliary function for the computation of function G in system A, the longitude of
the Sun/Moon at syzygy (function B in both systems), the orbital velocity of the Moon
expressed as its daily displacement (function F in both systems) and the length of day-
light (function C in both systems). The fact that these basic functions occupy the first
few columns in both systems may be related to the stepwise character of the compu-
tation of the ephemeris but it may also reflect the gradual development in time of the
theoretical framework on which the computation is based.

In a recent series of papers Britton has argued that the construction of system A
lunar theory was a singular creative act by an unknown author rather than a gradual
development where a limited number of different scholars during several succeeding
generations contributed to its final form as we know it from the surviving ephemerides
of the Seleucid and Arsacid era.11 He dates the invention of system A lunar theory to
within a few years of 400 BC and the derivative system B theory about one century later.

In his study Britton emphasizes that the invention of the Babylonian zodiac of 360◦

must predate – or have been invented simultaneously with – the construction of sys-
tem A lunar theory.12 He suggests that the invention of the Babylonian zodiac must
have taken place between 409 and 398 BC, consistent with his dating of system A lunar
theory. His dating is somewhat late compared to the more generally accepted view that
the Babylonian zodiac was introduced into Babylonian astronomy sometime during the
second half of the fifth century BC.13

The parameters on the basis of which the ephemerides are constructed must have
been derived from lunar observations, extensively and routinely carried out during cen-
turies, probably those recorded in the Diaries from about 750 BC onward. As we have
seen above about 10 to 20 different functions are needed to build a full-fledged lunar
ephemeris. I will concentrate here on the periods of functions Φ and F of system A.
Based on the textual evidence mentioned above it seems that these functions were the
first ones developed by the Babylonian scholars and that both were fully developed by

11 Britton ǠǞǞǥb; Britton ǠǞǞǧ; Britton ǠǞǟǞ.
12 Britton ǠǞǟǞ.

13 See e.g. Steele ǠǞǞǥ, ǡǞǟ.
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System Column Function Π Z Years Period

Moon A Φ, F, G zigzag 6247 448 505 13.9442

Sun A B step 2783 225 225 12.3689

Moon B F, G zigzag 251 18 20.3 13.9444

Sun B A zigzag 10019 810 810 12.3691

Tab. ǟ Parameters of basic functions in lunar ephemerides.

the middle of the fifth century BC. In addition I will also briefly discuss the period of
function F of system B as a derivative of function F of system A, and the periods of
functions B (system A) and A (system B) which (are needed to) determine the position
of the Moon and/or Sun at the moment of conjunction or opposition (syzygy). As I will
argue later the development of these early basic functions was a gradual process taking
place within the community of Babylonian astronomers during the late sixth and fifth
century BC. The ‘great’ periods Π and wave numbers Z of these basic functions are
summarized in Tab. ǟ.

Several important properties and features of these functions and the parameters
defining them may be noted:

– The values adopted for the ‘great’ periods Π (in synodic months) and the wave num-
bersZ are generally so large that they must have been constructed from shorter (pre-
sumably observed) periods. This is also suggested by the fact that 6247 and 251 are
prime numbers. To a lesser extent this also holds for the periods 2783 (= 112 × 23)
and 10 019 (= 43 × 233) which can be factorized but only into products involving
fairly awkward prime numbers. The construction of ‘great’ periods by linear com-
bination of shorter observed periods in Babylonian astronomy is also known from
planetary theory. If lunar theory was developed first this technique may have been
pioneered in the construction of these early lunar functions.

– The specific choice of the parameter values may also have been influenced by arith-
metical convenience. This is suggested by the factorization of the wave numbers Z
into nice low prime integers: 448 = 26 × 7, 225 = 32 × 52, 810 = 2 × 34 × 5,
and 18 = 2 × 32. Notice that several of these wave numbers show nice behavior
in sexagesimal arithmetic (60 = 22 × 3 × 5).
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– Another important aspect of the construction process appears to be that the ‘great’
period Π generally spans an integer number of solar years. This is also known from
planetary theory and is generally thought to be introduced to eliminate the effect
of variable solar velocity (solar anomaly). The numbers in Tab. ǟ suggest that the
Ǡǥ-year Sirius period (334 synodic months= 27 solar years) was used in the con-
struction of the period of functions F and Φ because 6247 synodic months span
almost exactly 505 years (minus 1 day) while according to the ǟǧ-year cycle (235 syn-
odic months= 19 solar years) 6247 synodic months are equivalent to 505 years plus
28 days. On the other hand, the ǟǧ-year cycle does result in a better – albeit far from
perfect – approximation to the periods of the solar functions B and A (errors of
3 and 17 days, respectively). Since the ǟǧ-year cycle was recognized as superior to
the Ǡǥ-year Sirius period by the end of the sixth century BC,14 this suggests that the
ǤǠǢǥ-month period is the oldest period in the lunar theory and that its derivation
dates from before 500 BC.

– The reason why the system B lunar period of 251 months does not fit an integer
number of years may be related to the way in which that period was derived as will
be discussed later in this paper.

– If function Φ was originally meant to represent the time difference between two
eclipses one Saros apart as first suggested by Neugebauer,15 it involved Full Moon
dates only (function Φ2), running from one Full Moon to the next one with a time
step of one synodic month. The new moon function Φ1 was probably derived
later from an intermediate daily variant function Φ∗ by applying a phase shift of
15 tithis’s with respect to the Φ2-values.16 It is consistent with this scenario that the
original function Φ2 – and not Φ1 – contains the ‘nice value’ 2,0,0,0,0,0 which may
have been adopted as initial value. The values of function Φ are generally ‘dirty’
sexagesimal numbers with 5 ‘decimal’ places.17 Of all 6247 entries of function Φ2

only two are ‘nice’ numbers, both having the value 2,0,0,0,0,0, one on an ascending
branch and one on a descending branch. Note that 2 ‘large hours’ correspond to
2,0 UŠ,18 equivalent to 480 minutes of time or 8 equinoctial hours, indeed about
the average time interval between eclipse times of two eclipses one Saros apart.
The average value of function Φ2 equals 2;7,26,26,20,0 ‘large hours’, equivalent to
8 ½ equinoctial hours.

14 Britton ǠǞǞǠ, ǡǞ.
15 Neugebauer ǟǧǣǥ.
16 See HAMA, Ǣǧǧ–ǣǞǠ.

17 This may be illustrated by listing an arbitrary
set of five consecutive values of function Φ:
2,2,45,55,33,20; 2,5,31,51,6,40; 2,8,17,46,40,00;
2,11,3,42,13,20; 2,13,49,37,46,40; etc.

18 See HAMA, ǡǤǥ.
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– Using the known relation of function Φ2 to the Babylonian lunar calendar,19 one
finds that Φ2 attained the value 2,0,0,0,0,0 (on an ascending branch) on the Full
Moon date of month VIII in year 1 of Cambyses, corresponding to Julian date
17 November 529 BC, a date listed in the Early Saros Scheme20. On this date a partial
lunar eclipse took place in Babylon with first contact occurring 45 UŠ after sunset.
The observation of this eclipse is recorded in the lunar eclipse text BM 36879.21

The date associated with the other value 2,0,0,0,0,0 of Φ2 (on a descending branch)
is the Full Moon date of month VII of year 25 of Artaxerxes I, corresponding to
26 October 440 BC. This date is not associated with a lunar eclipse.

– From ephemerides of system A one finds that functions Φ and F do not only have
the same period but also have the same phase. This is somewhat counter-intuitive
because function Φ is supposed to model the time elapsed between two lunar events
a whole number of lunar anomaly periods apart while function F models orbital
velocity (the lunar anomaly itself) so that one might a priori expect them to be
180◦ out of phase rather than in phase. Following a suggestion by John Britton,
Aaboe provides an explanation for this.22

– Finally I note that the accuracy of the astronomical parameters implicit in the peri-
ods and wave numbers displayed in Tab. ǟ is remarkably good. Dividing the periodsΠ by the wave numbers Z we display in the last column of Tab. ǟ the length of the
anomalistic lunar period (the number of synodic months after which the Full Moon
returns to the perigee of the lunar orbit, the point of closest approach of the Moon
to the Earth and – by definition – the position of maximum lunar velocity) and
the length of the (sidereal) solar year expressed in synodic months (the basic Baby-
lonian unit of time). Apparently Babylonian astronomers managed to determine
these parameters with an accuracy of about 10−5 and 10−4, respectively.

Ǡ The Ǡǥ-year Sirius period and the solar year

The first visibility of the bright star Sirius has played an important role in Babylonian
calendar regulation from early times onward. This is attested by several passages in the
astronomical compendium MUL.APIN23 dating from the late second millennium BC.24

It ultimately resulted in the intercalation pattern of the ǟǧ-year calendar cycle adopted
in Babylonia shortly after 500 BC.25

19 See HAMA, ǢǦǢ.
20 Steele ǠǞǞǞ.
21 See Huber and De Meis ǠǞǞǢ, ǧǢ.
22 Aaboe ǟǧǤǦ, ǟǞ–ǟǟ.

23 Hunger and Pingree ǟǧǧǧ, ǣǥ–Ǧǡ.
24 De Jong ǠǞǞǥ.
25 Sachs ǟǧǣǠ; Britton ǠǞǞǥa.
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The early text BM 45728 containing Babylonian period relations includes a Ǡǥ-year
Sirius period. This text was first discussed by Kugler and dated by Britton to around
600 BC.26 Use of the Ǡǥ-year Sirius period is attested in the early text BM 36731+ in
which rising and setting dates of Sirius are computed for the years 627–562 BC.27

Observations of the first visibility of Sirius show that after 27 years Sirius rises again
on about the same date in the Babylonian lunar calendar. This implies that 27 solar (si-
dereal) years correspond to 334 synodic months. This period relation is not very accurate
because the dates shift backward by about 1.5 days in the lunar calendar after each cycle.
Due to variations in the atmospheric extinction (weather) the dates of first visibility of
Sirius may vary by up to about 3 days around the nominal date so that it may have taken
the Babylonian astronomers about one century before they found out about the limited
accuracy of the Ǡǥ-year period.

One interesting aspect of the Ǡǥ-year cycle is the implicit existence of the Ǧ-year and
ǟǧ-year cycles. A period of 8 years corresponds to 8/27 × 334 = 98;57,46,40 synodic
months and 19 years corresponds to 235;02,13,30 months. Thus according to the Ǡǥ-
year cycle 99 months is 1;06,40 tithi longer than 8 years, while 235 months is 1;06,40
tithi shorter than 19 years. Around 500 BC when the ǟǧ-year cycle was adopted as the
fundamental calendar cycle, the Babylonian scholars had apparently realized that the Ǡǥ-
year cycle was about 1–2 tithis short and that the ǟǧ-year cycle was of superior accuracy.

ǡ Lunar Four observations and the Saros

The velocity of the Moon varies during its course through the heavens. Thanks to Jo-
hannes Kepler (1571–1630) we know now that this variability is due to the ellipse form
of the lunar orbit. The Moon reaches its largest velocity (∼16◦ per day) at perigee (mini-
mum distance to the Earth) and its lowest velocity (∼12◦ per day) at apogee (maximum
distance to the Earth). The perigee progresses about 3◦ per synodic month so that it takes
the Moon longer to return to its perigee (27.55 days) than to return to the same position
in the sky (27.32 days). Since the Sun moves about 30◦ per month it takes even longer
for the Moon to move from one Full Moon to go the next one (29.53 days). The devi-
ation from circularity of the lunar orbit is known as its anomaly (after Ptolemy) and
the time it takes for a Full Moon at perigee to return to the next Full Moon at perigee
(13.94 synodic months) is called the anomalistic period of the Moon. After one anoma-
listic period the Moon has completed 15 orbital revolutions and an additional 24◦ in
the sky. The ellipse form of the lunar orbit is a modern notion; Babylonian astronomers
were thinking in terms of variable velocity of the Moon.

26 Kugler ǟǧǞǥ, Ǣǣ–ǢǦ; Britton ǠǞǞǠ, ǠǤ. 27 Britton ǠǞǞǠ.
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Early Babylonian awareness of a roughly ǟǢ-month velocity period of the Moon is
attested in Atypical Text C, first discussed by Neugebauer and Sachs and most recently by
Brack-Bernsen and Steele.28 This awareness probably originates from inspection of long
sequences of so-called Lunar Four data,29 which were routinely recorded in the Diaries.
The Lunar Four consist of the set of four observations of the time elapsed between sun-
rise/-set and moonrise/-set on days around full moon: ŠU (sunrise to moonset around
sunrise), NA (moonset to sunrise around sunrise), ME (moonrise to sunset around sun-
set), and GE6 (sunset to moonrise around sunset).

The earliest collection of Lunar Four observations dates from the late seventh cen-
tury BC (BM 38414).30 The well-preserved text Strassmaier Cambyses 400 (BM 33066)
contains Lunar Four observations for the seventh year of Cambyses II (523/522 BC). The
fact that the data set in Cambyses 400 is virtually complete implies that missing obser-
vations (e.g. due to bad weather) must have been filled in by some predictive method.
Britton suggests that most probably previous data – one or more Saroi back – were used
for this.31

Brack-Bernsen and Schmidt have shown that the Lunar Four observations play an
important role in the early development of Babylonian lunar theory.32 They realized
that the sum of the observed values of the Lunar Four, a quantity they called Σ, provides
a good approximation to twice the lunar velocity at full Moon. Thus the availability of
long sequences of Lunar Four observations enabled the Babylonian scholars to study the
variability of the lunar velocity. In this way they must have first discovered the crude ǟǢ-
month period in the return of the Full Moon to maximum (or minimum) lunar velocity
and later the refinement of this period to 223/16= 13.9375 synodic months based on the
Saros period of 223 synodic months. The latter is based on the realization that 16 lunar
velocity periods are more accurately approximated by 223 than by 224 synodic months.

Lunar and solar eclipses are already mentioned in the Old-Babylonian omen series
‘Enuma Anu Enlil’ (second millennium BC). Reports and letters sent by Assyrian and
Babylonian astronomers to the Assyrian kings Esarhaddon and Assurbanipal in the sev-
enth century BC show awareness that lunar eclipse possibilities occurred at intervals of
6 and (occasionally) 5 months. Lunar eclipses were recorded routinely in the Diaries.
The oldest preserved Diary dates from 652 BC.

From the available texts it appears that at the end of the seventh century BC, a de-
tailed scheme to predict lunar eclipses based on an ǟǦ-year cycle (the so-called Saros)
had been worked out.33 These texts suggest that apparently a continuous lunar eclipse
record was available from ∼750 BC onward.

28 Neugebauer and Sachs ǟǧǤǥ; Brack-Bernsen and
Steele ǠǞǟǟ.

29 See Hunger and Pingree ǟǧǧǧ, ǟǧǤ–ǟǧǦ.
30 Huber and Steele ǠǞǞǥ.

31 Britton ǠǞǞǦ; see also Brack-Bernsen ǠǞǞǠ.
32 Brack-Bernsen and Schmidt ǟǧǧǢ.
33 Steele ǠǞǞǞ.
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The Saros consists of a sequence of 38 lunar eclipse possibilities distributed in a fixed
pattern of groups of 8 or 7 eclipses at Ǥ-months intervals, each group separated from
the next one by a ǣ-month interval, altogether totaling 223 synodic months, equivalent
to about 18 years. After one Saros the Sun, Moon, and Earth return to approximately
the same relative geometry and a nearly identical lunar eclipse will occur. The Saros
derives from the approximate equality: 223 synodic months (29d.530588) ≈ 242 dra-
conitic months (27d.212220)≈ 239 anomalistic months (27d.554550)≈ 6585 1/3 days=
18 years + 10 (or 11) days + 8 hours. The Saros is referred to in the texts as ‘18 MU.MEŠ’
(‘18 years’).

It turns out that all eclipses mentioned in Babylonian astronomical texts – either
predicted or observed – between 750 and 300 BC are part of the so-called ‘Early Saros
Scheme’.34 The Early Scheme breaks down around 300 BC because the resonances be-
tween the different periods on which it is based are not perfect. There is evidence that
the Saros scheme was revised several times after 300 BC. The revision around 260 BC
resulted in the so-called ‘Saros Canon’.35

The Babylonian scholars must have discovered the Saros period by inspecting their
large database of hundreds of lunar eclipses and recognizing that after one Saros lunar
eclipses repeat with similar magnitude, occultation pattern and duration.36 This similar-
ity evolves quite slowly so that it typically persists for some hundred years for successive
eclipses in one and the same line of the Saros scheme.

Measured in days the Saros period corresponds to 6585 1/3 days so that for lunar
eclipses in one and the same line of the Saros scheme, we have:

– After three Saros periods (about 54 years) similar lunar eclipses occur at about the
same time of night,

– Lunar eclipses in a Saros line often occur in pairs, separated by one or two unob-
servable day-time eclipses.

Ǣ The ǤǠǢǥ-month lunar period

After 223 synodic months the Sun has progressed ∼10◦ with respect to its position one
Saros earlier so that the exact length of the Saros is affected by the variable velocity of
the Sun (the solar anomaly). At maximum solar velocity 10 days (the excess of one Saros
over 18 years) correspond to ∼10◦ and at minimum velocity to ∼9◦ so that the average
time between two eclipses one Saros apart may differ by about 2 hours (the time for the
Moon to traverse 1◦).

34 Steele ǠǞǞǞ. 35 The Saros scheme discovered by Strassmaier in the
ǟǦǧǞs; see Aaboe, Britton, et al. ǟǧǧǟ.

36 Pannekoek ǟǧǟǦ.
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Thus an improved lunar velocity period can be derived by eliminating the effect of
solar anomaly or – phrased in Babylonian language – the variable velocity of the Sun in
its orbit. As we know from Babylonian planetary theory this is achieved by constructing
a new ‘great’ period from a linear combination of shorter observed periods such that
they span an integer number of solar years.

For this construction we need a relation between the length of the Saros, the period
after which the Moon returns to its orbital velocity (the lunar anomalistic period), and
the solar year after which the Sun returns to its orbital velocity (the solar anomalistic
period), both expressed in synodic months. By definition the Saros is equivalent to 16 lu-
nar velocity periods spanning 223 synodic months. The length of the solar year may be
expressed in synodic months by using the Sirius period relation discussed above where
we have seen that 27 solar years correspond to 334 synodic months. We then find that
one solar year lasts 334/27= 12.37 months, corresponding to 12 months and 11 days, or
approximately 12 1/3 months. The Sirius period relation further implies that three Saroi
(669 synodic months) correspond to 54 solar years (668 synodic months)+ 1 month so
that one Saros of 223 synodic months lasts 18 years+ 1/3 month. Using these relations
the Babylonian astronomers may have computed the smallest common multiple of the
synodic month, the solar year and the Saros to find that

37 Saroi = 37 × 223 months = 8251 months
= 37 × (18 years + 1/3 month) = 666 years + 12 1/3 months = 667 years.

Thus 37 Saroi are equivalent to 37×16 = 592 lunar velocity periods or 37×223 = 8251
synodic months and last 667 solar years.

Using this relation as a starting point I display in Tab. Ǡ other relations that fit within
an integer number of years by subtracting 54 years (= 3 Saroi − 1 month) in steps. The
entries in Tab. Ǡ are the only linear combinations of an integer number of Saroi and at
most 12 lunar months that result in periods of an integer number of solar years defined
according to the Ǡǥ-year Sirius period relation. These relations may also be considered
as linear combinations between ǠǠǡ-month periods (Saroi) and the more primitive ǟǢ-
month periods providing improved approximations to the lunar velocity period. Thus
starting with 8251 = 37× 223+ 0× 14 months making up 592 lunar velocity periods,
we have 7583 = 33× 223+ 16× 14 months making up 544 velocity periods, 6915 =

29×223+32×14 months making up 496 velocity periods, 6247 = 25×223+48×14
months making up 448 velocity periods, etc.
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Period
[years]

Saroi Months Months
added

Π
[months]

Largest
factor

Z Largest
factor

Vel. per.
[months]

667 37 8251 0 8251 223 592 37 13.937500

613 34 7582 1 7583 7583 544 17 13.939338

559 31 6913 2 6915 461 496 31 13.941532

505 28 6244 3 6247 6247 448 7 13.944196

451 25 5575 4 5579 797 400 5 13.947500

397 22 4906 5 4911 1637 352 11 13.951705

343 19 4237 6 4243 4243 304 19 13.957237

289 16 3568 7 3575 143 256 2 13.964844

235 13 2899 8 2907 17 208 13 13.975962

181 10 2230 9 2239 2239 160 5 13.993750

127 7 1561 10 1571 1571 112 7 14.026786

73 4 892 11 903 301 64 2 14.109375

19 1 223 12 235 47 16 2 14.687500

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Tab. Ǡ Linear combinations of Saros periods and lunar months resulting in an integer number of solar years.

Based on the data in Tab. Ǡ one can make the following observations:

– The ǤǠǢǥ-month period is among the constructed periods Π listed in column (v).

– The values of the ‘great’ periods Π are often prime numbers and not reducible to
products of nice numbers as follows from the largest factors in column (vi).

– The wave numbers Z result from multiplication of the number of Saroi in column
(ii) by 16 (the number of anomaly periods contained in one Saros)

– Only about half of the wave numbers Z are reducible to factors smaller than 10
(column (viii)).

– The relation 28 Saroi+ 3 months= 6247 months which underlies the derivation of
the ǤǠǢǥ-month period naturally explains the ratio 3/28 which plays a central role in
the arithmetical structure of function Φ and in the computation of function G.37

37 See HAMA, ǢǦǢ–ǢǦǦ and Ǣǧǥ–Ǣǧǧ.
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– The ǤǠǢǥ-month period provides the best approximation to the modern value of
the anomalistic period of 13.943355 synodic months (column (ix)).

Why did the Babylonian scholars select the ǤǠǢǥ-month period from the possible pe-
riods listed in Tab. Ǡ? I propose that the answer to this question may be sought in
a combination of astronomical considerations and numerical convenience. It is clear
that a Saros of 223 months provides a much better approximation to 16 lunar velocity
periods than 14 months to one velocity period. This implies that the best ‘great’ periodΠ must be chosen from the candidate periods in the upper half of Tab. Ǡ because they
may be considered as linear combinations of ǠǠǡ-month and ǟǢ-month periods which
are most strongly dominated by the ǠǠǡ-month period. Among those candidate periods
the ǤǠǢǥ-month period is the only one for which all 6247 function values are different
because 6247 is a prime number and for which the wave numberZ is reducible to a small
fairly ‘nice’ integer number. The fact that the ǤǠǢǥ-period also provides the most accu-
rate approximation to the value of the lunar velocity period must then be considered as
accidental.

ǣ Function F of system A

Brack-Bernsen and Schmidt were the first to realize that the sum of the Lunar Four (des-
ignated Σ by them) provided a good approximation to twice the lunar velocity around
Full Moon.38 That this must have provided the basis for the choice of the other param-
eters characterizing function F of system A (the amplitude and the average value) can
best be demonstrated by showing how remarkably well the lunar velocity function F of
system A reproduces the observed Σ/2 values. This is done in Fig. ǟ where I have plotted
Σ/2-values during 10 years in the middle of the sixth century BC together with function F
values computed from its defining parameters: Π = 6247, Z = 448, d = 0◦;42, andμ = 13◦;30,30.39 Notice that 42 is a multiple of 7, the largest factor in the wave numberZ (column (viii) in Tab. Ǡ). In view of the excellent fit of function F to the variable lunar
velocity I believe that the ǤǠǢǥ-month period was first and foremost constructed to pro-
vide an improved lunar velocity period and that function F was the first lunar function
developed.

38 Brack-Bernsen and Schmidt ǟǧǧǢ. 39 See HAMA, ǢǥǦ–Ǣǥǧ.
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Fig. ǟ Synthetic lunar velocity data (small dots with error bars) and function F2 of system A (large open dots) for
the years 550–540 BC. The lunar velocity data are computed from synthetic Lunar Four data taken from a database
generated for the period 750–0 BC. Error bars in the (synthetic) observational data are estimated by comparing the
Cambyses ǢǞǞ Lunar Four data (Britton ǠǞǞǦ) with synthetic data and noting that the errors in Σ (the sum of the
Lunar Four) are twice those in the individual Lunar Four values and that Σ/2 is displayed.

Ǥ Function Φ of system A

According to the text BM 36705+ function Φ was meant to represent the magnitude of
the change in the time difference (of about 8 hours) between two lunar eclipses one Saros
apart,40 and thus originally applied to Full Moon dates only (designated Φ2).41 The text
mentions the small number 0;17,46,40 as the magnitude of this change. Since 0;17,46,40
UŠ corresponds to 1;11,6,40 minutes of time it follows that function Φ predicts that the
time difference between two eclipses one Saros apart changes only very slowly. This
is qualitatively in agreement with observation but quantitatively too small because in
reality eclipse time differences change by up to about 3 UŠ between eclipses one Saros

40 Neugebauer ǟǧǣǥ.
41 An alternative interpretation of function Φ was

suggested by Brack-Bernsen (Brack-Bernsen ǟǧǧǞ;
Brack-Bernsen ǟǧǧǥ). Struck by the fact that func-
tion Φ provided a remarkably good fit to the sum Σ
of the Lunar-Four with 100 UŠ added, she suggested
that function Φ was meant to represent the quantityΣ + 100 UŠ. Her suggestion was recently criticized

and refuted by Britton (ǠǞǞǧ, Ǣǟǣ–ǢǟǤ). However,
Brack-Bernsen’s basic observation that function Φ
and the quantity Σ are in phase is correct. Instead
I have argued above that the fact that the quantityΣ provides a good approximation to twice the daily
lunar velocity at Full Moon (see Fig. ǟ) may have
been used by the Babylonian scholars to construct
function F rather than function Φ.
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apart.42 In view of the limited accuracy of their measurement of eclipse times,43 it is
amazing that the Babylonian scholars managed to observe this small gradual change at
all. They correctly concluded that this slow change must be due to the variable lunar
velocity and could therefore be modeled by a zigzag function with the same period
and wave number as the lunar velocity function F. The fact that they also realized that
functions Φ and F have the same phase is more miraculous because that is far from
obvious as argued earlier in this paper.44

I will show elsewhere45 that function Φ2 indeed provides a fairly satisfactory fit to
the differences of eclipse times between successive lunar eclipses for all 38 Saros lines in
the Saros scheme. This fit is superior to the early zigzag function in BM 4586146 in the
sense that one and the same function Φ2 fits eclipse time differences both for odd and
even Saros lines and that it models the slow change in the eclipse time difference with
time but it is inferior in the sense that the accuracy with which it fits the eclipse time
differences as a whole is less than that of the fits of the zigzag function in BM 45861 for
odd and even Saros lines separately.

In the early texts in which full-fledged versions of functions Φ and F are encountered
they are given in their truncated form,47 while in the later ephemerides we only find the
pure versions. I think that this may have to do with the fact that initially Φ2 was meant
to model eclipse time differences but that later its use in the ephemerides was limited to
the chronological connection of ephemerides and to its application as auxiliary function
for the computation of function G.48

ǥ Function F of system B

Lunar velocity periods of 251 and 223 lunar months are very hard to detect in Lunar
Four observations because their effect is drowned in the more crude but fairly obvious
ǟǢ-month period. The fact that 251 synodic months, the period chosen for function F of
system B, equals 223+2×14 synodic months is not of much help, because it is not clear
why this particular linear combination of 223 and 14 synodic months may have been
chosen. I believe that the most straightforward way by which Babylonian astronomers

42 See Appendix C1 of Britton ǠǞǞǥb.
43 In Mesopotamia eclipse times were measured with

respect to sunrise and sunset presumably with the
aid of water clocks. Steele, Stephenson, and Mor-
rison (ǟǧǧǥ) have shown that the random errors
in the Babylonian measurements of eclipse times
amount to about 2 UŠ while systematic errors of
about 10% are expected due to clock drift.

44 See again Aaboe ǟǧǤǦ, ǟǞ–ǟǟ.
45 This paper is a progress report of a more extensive

study on the early development of Babylonian lunar
theory that I intend to publish separately.

46 Discussed by Steele ǠǞǞǠ and Brack-Bernsen and
Steele ǠǞǞǣ.

47 Aaboe and Sachs ǟǧǤǧ.
48 See HAMA, ǣǞǣ–ǣǟǡ.
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were able to single out the velocity period of 251 synodic months is based on its superior
accuracy as derived by continuing function F of system A.

We have seen above that after one Saros of 223 synodic months function Φ2 returns
to a value that differs from its previous value by the small amount of 0;17,46,40 UŠ.
Similarly, according to function F of system A (which has the same amplitude and phase
as function Φ but a different amplitude and initial value), after 223 months the lunar
velocity attains a value that differs only 0◦;4,30 per day from its value 223 months before.
While this is quite a small difference it is not the smallest one possible. It is easy to show
by numerically continuing function F of system A that the smallest difference between
all possible pairs of its 6247 function values is 0◦;0,5,37,30 per day for a pair separation
of 2998 synodic months. The next one up has a velocity difference of 0◦;0,11,15 per day,
twice larger than the smallest value, at a pair separation of 251 months. This ‘period’ is
the first one found by continuing function F beyond 223 months, and the one apparently
chosen for function F of system B.

In view of the algorithms developed by Babylonian astronomers to numerically
check some of the computations in their ephemerides, one would expect that they
should also have been able to find the larger more accurate velocity period of 2998
months but that the Ǡǣǟ-months period was chosen because of numerical convenience.
The fact that 251 synodic months does not correspond to an integer number of solar
years might indicate that it was indeed not found from a linear combination of smaller
periods as is the case for most other Babylonian lunar and planetary periods. The argu-
ment presented here for the choice of the Ǡǣǟ-month period for function F of system B
suggests that system B must have been developed after system A.

Ǧ Early solar models

The most obvious starting point for early solar models is the Ǡǥ-year Sirius period be-
cause it defines a period after which the Sun returns exactly to its position in the sky
expressed in synodic months, the time unit of Babylonian astronomy. Now, as we have
seen before, the accuracy of the Ǡǥ-year period is limited because the lunar calendar date
of first visibility of Sirius regresses ∼1 day after 27 years. Thus a better approximation is
provided by a modified Ǡǥ-year period: 334 synodic months − 1 day = 27 solar years.
Making use of the identity 30 days (tithis)= 1 month, and multiplying both sides of
this relation by 30 we immediately find the system B solar period relation: 10 020 −

1 month = 10 019 months = 810 years (see Tab. ǟ). Cast in Babylonian sexagesimal
notation we find that after a period of Π= 2,46,59 months the Sun has completedZ= 13,30 revolutions. This period relation is used in system B to construct the zigzag
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function A for the solar velocity. It yields a year length of 10019/810= 12;22,8,53,20 syn-
odic months.

Since year-length enters a lot of astronomical computations it is convenient to use
a truncated or rounded-off value, i.e. 12;22,08 or 12;22,09 synodic months. Both values
can be translated into period relations. We find: Π= 2783 (46,23), Z= 225 (4,45) for
a year-length of 12;22,08 months, and Π= 14843 (4,7,23), Z= 1200 (20,0) for 12;22,09
months. Apparently Babylonian astronomers chose the smaller period for their system A
function B, possibly because an ‘epact’49 of 11;04 tithis is more attractive for computa-
tional purposes than 11;04,30 tithis.

ǧ Discussion

I begin this discussion about the time frame and evolution of the early phase of Baby-
lonian lunar theory by noting that function Φ was originally constructed to represent
eclipse time differences and thus by definition applied to full moon dates only (desig-
nated Φ2). Using the known relation of Φ2 to the Babylonian calendar, we have seen
that Φ2 attains the value 2,0,0,0,0,0 on day 13, month VIII in year 1 of Cambyses, corre-
sponding to Julian date 17 November 529 BC, the date of an attested lunar eclipse listed
in the Early Saros Scheme.50 I suggest that this nice sexagesimal number was chosen as
initial value of function Φ2. Notice that Brack-Bernsen and Steele in their analysis of
the early attempt to fit eclipse time differences by zigzag functions in BM 45861 suggest
that these functions were constructed around 530 BC,51 surprisingly close to the eclipse
date of the initial value of the more sophisticated function Φ2.

The lunar eclipse one Saros after the one of 17 November 529 BC took place in
the morning of day 13, month VIII in year 11 of Darius, corresponding to Julian date
29 November 511 BC. This lunar eclipse was visible in Babylon with first contact occur-
ring at 40 UŠ before sunrise,52 but there is no record of this eclipse in presently known
astronomical cuneiform texts. The eclipse time difference between these two eclipses is
2,01 UŠ, within the measurement error identical to the initial value adopted for func-
tion Φ2. This does not only hold for this eclipse pair but it can be shown that the average
eclipse time difference between all lunar eclipses in this Saros line during the sixth and
the first half of the fifth century BC equals 2,0 ± 0,01 UŠ.53

49 The ‘epact’ is defined as the excess of a solar year
over the lunar year of 12 synodic months. An epact
of 11;04 tithis is also used in Babylonian planetary
theories, both of system A and B (Neugebauer ǟǧǥǣ,
ǡǧǣ–ǡǧǤ).

50 Steele ǠǞǞǞ.
51 Brack-Bernsen and Steele ǠǞǞǣ.
52 Huber and De Meis ǠǞǞǢ, ǟǦǦ.
53 See Britton ǠǞǞǥb, Appendix C1.
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If the 529 BC lunar eclipse is indeed associated with the initial value of function Φ2

it provides a ‘terminus post quem’ for the construction of functions Φ and F. If the
full-fledged versions of both functions for the years 475–457 BC in BM 36737+ may be
considered as a ‘terminus ante quem’ functions Φ and F were conceived before 450 BC.
Of course, the conception date may have been later if the computations in the text were
carried out for comparison with older data. A strong argument in favor of an early date
for the derivation of the ǤǠǢǥ-month period is provided by the fact that it is partly based
on the Ǡǥ-year Sirius cycle which was used for calendar purposes in the sixth century BC
but was superseded by the ǟǧ-year cycle around 500 BC.54 This suggests that functionsF and Φ were conceived in the late sixth century, consistent with an initial value for Φ2

associated with the lunar eclipse of November 529 BC.
Recently Britton has published a detailed study of Babylonian lunar theory in which

he suggests that it dates from shortly after 404 BC and that its creation may be attributed
to one single author.55 While the final version of the theory as we know it from the lunar
ephemerides of the Seleucid and Arsacid era may well have been formulated by one
single Babylonian scholar I prefer to think that it is the end product of a more gradual
process to which several generations of Babylonian scholars have contributed. As argued
here this gradual process may have started with the construction of the improved lunar
anomaly period of 6247 synodic months on which functions F and Φ of system A are
built.

Britton anchors function Φ2 in time by using the shortest Ǥ-month time interval
between two lunar eclipses since systematic records were maintained (about 750 BC)
and by assigning the associated Φ-value of 2,8,53,20 to the syzygy corresponding to the
eclipse of 18 August 404 BC at the end of this interval.56 He assumes that the final formu-
lation of Babylonian lunar theory was completed shortly afterwards and he uses this as
constraints for dating the invention of the Babylonian theoretical zodiac.57 I must con-
fess that I find his reasoning far from convincing. One – but not the only – reason for
this is that dating the minimum Ǥ-month eclipse time interval by Babylonian observers
is doomed to be extremely uncertain because the accuracy with which they could de-
termine this interval from observed eclipse times is of the order of 1 hour (see note Ǣǡ
above).

If my suggestion for the construction of the solar periods for system A and B is
correct they both derive from the same refined Ǡǥ-year Sirius relation. In system B the
period relation obtained was directly used for the construction of function A. In sys-
tem A the original period relation was modified to obtain a numerically suitable value

54 Britton ǠǞǞǠ; Britton ǠǞǞǥa.
55 Britton ǠǞǞǥb; Britton ǠǞǞǧ; Britton ǠǞǟǞ.

56 Britton ǠǞǞǧ, ǢǞǢ–ǢǞǣ.
57 Britton ǠǞǟǞ.
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of the year length, associated with the derivation of function B. This does not provide
a direct clue about the priority of the two functions.

Given the fact that the lunar function F (system A) may already have been fully de-
veloped by about 450 BC and that a primitive version of the solar function B (system A)
with a year length of 12;23 months was used in a text from about 400 BC,58 we may con-
clude that the system A solar model (function B) was developed after the lunar velocity
model (function F) and that it took at least half a century, and probably longer, to reach
its canonical form.

In summary, I propose that the development of Babylonian lunar theory was a grad-
ual process. It started in the late sixth century BC with the derivation of the ‘great’ pe-
riod of 6247 synodic months for the lunar velocity variation. Based on this period the
lunar velocity function F and the eclipse time difference function Φ of system A were
constructed shortly afterwards. The next step was to model the position of the Moon
at syzygy and during eclipses. Therefore the position of the Sun at syzygy was needed,
as well as a theoretical coordinate system. Several early attempts of system A-type so-
lar functions are textually attested (BM 36737+ and BM 36822+). The Babylonian 360◦

zodiac may have been introduced around 450 BC while it took until the early fourth cen-
tury BC before the solar longitude function B of system A reached its canonical form.
System A lunar theory was apparently finished by 320 BC. System B lunar theory may
have been a later invention, possibly dating from around 300 BC.

58 Aaboe and Sachs ǟǧǤǧ, Text A.
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TEIJE DE JONG

is emeritus professor of Astrophysics at the Univer-
sity of Amsterdam. Educated at Leiden University
he has held appointments at Leiden Observatory
(the Netherlands), Harvard University (Cambridge,
MA) and Space Research Organization Nether-
lands. His research covers the fields of Interstellar
and Circumstellar Matter, Late Stages of Stellar
Evolution, Star Formation, Structure and Evolution
of Galaxies, and the History of Astronomy.

Prof. Dr. Teije de Jong
University of Amsterdam
Astronomical Institute Anton Pannekoek
Postbox ǧǢǠǢǧ
ǟǞǧǞ GE Amsterdam, Netherlands
E-mail: t.dejong@uva.nl

ǟǠǤ

http://www.jstor.org/stable/41134091
http://www.jstor.org/stable/41134091
https://doi.org/10.1080/00033790701245711
http://adsabs.harvard.edu/abs/1997JHA....28..337S


Mathieu Ossendrijver

BM ǥǤǢǦǦ – a Babylonian Compendium about
Conjunctions and Other Planetary Phenomena

Summary

This paper discusses the cuneiform tablet BM 76488, which partly preserves a hitherto
unknown Babylonian compendium about planetary phenomena. In several of the pre-
served sections, periods are assigned to pairs of planets – a topic not attested elsewhere in
Mesopotamian astral science. The analysis presented here suggests that some of the periods
describe the empirical behavior of planetary conjunctions.

Keywords: Babylonian astronomy; planets; synodic phenomena; conjunctions; periods.

Dieser Beitrag beschäftigt sich mit der Keilschrifttafel BM 76488, auf der ein bisher unbe-
kanntes babylonisches Handbuch zu Planetenphänomenen teilweise erhalten ist. In meh-
reren der erhaltenen Sektionen werden Perioden zu Planetenpaaren zugeordnet – ein The-
ma, das an keiner anderen Stelle in der mesopotamischen Sternkunde belegt ist. In der
präsentierten Analyse wird vorgeschlagen, dass einige der Perioden das empirisch erfasste
Verhalten von Planetenkonjunktionen beschreiben.

Keywords: Babylonische Astronomie; Planeten; Synodische Phänomene; Konjunktionen;
Perioden.
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̝̤̘̙̥̑̕ ̢̢̟̣̣̞̙̦̔̕̚̕

The fragment BM 76488 (measures: 9.2 × 7.6 × 2.2–3.2 cm) preserves the upper part of
the obverse and the lower part of the reverse of a tablet (Figs. ǟ–Ǡ).1 The obverse is heavily
eroded and very difficult to read. The lower part of the obverse is partly blackened, pre-
sumably as a result of burning. On the reverse the surface is in a better condition, except
for two damaged spots in column ii. The provenance of the tablet cannot be established
with certainty. The remains of a colophon on the reverse do not preserve a date, place
or name of a scribe. The tablet belongs to the Sippar collection of the British Museum,
where it was registered on ǟǦ January ǟǦǦǡ (accession number: 83-1-18, 1858).2 This lot
comprises five cases of tablets that were excavated unscientifically by Hormuzd Rassam
and his coworkers in Babylon, Sippar (Abu Habba), Borsippa (Birs Nimrud), as well as
one or more Assyrian sites.3 Several features allow us to narrow down the provenance
and date of the tablet. Since it is inscribed in Babylonian cuneiform, an Assyrian ori-
gin is unlikely. Moreover, its cushion-like shape would be unusual for Babylon, which
speaks in favor of Sippar or Borsippa. A precise date cannot be determined, since the
colophon does not mention one, nor does the text report any datable phenomena. Ac-
cording to the colophon, the tablet was copied from a wooden board (inlaid with wax).
Orthographical and terminological features suggest that the tablet and the original text
date between about 500 and 300 BCE. In particular, the occasional use of the Late Baby-
lonian variant of the numeral 9 (rev. ii 9′, 22′) suggests that the tablet was written after
about 450 BCE, while the use of was

˙
ābu (DAH

˘
) for addition, instead of the synonymous

t
˙
epû (TAB), suggests that the original was written before the Seleucid era (300 BCE).4

ǟ Transliteration and translation

ǟ.ǟ Obverse

§1 (1) IGI u ŠU2 ša2
dSAG.ME.GAR ana

⸢IGI.LA2-ka MU ana MU ša2 x-ka
xxx.MEŠ TA x⸣ IGI u ŠU2 ⸢x⸣ [xx]

In order for ⸢you to see⸣ the appearance
and setting of Jupiter, ⸢year by year: …⸣
the appearance and setting ⸢…⸣ […]

(2) ⸢xxx⸣-s
˙
i ina MU-ka ina 1⸢5 xx BE x⸣

[xxx] ⸢xxx lu-maš xx⸣ 30 ŠE? ⸢x DU x⸣
⸢…⸣ … in your year in 1⸢5 …⸣ […] ⸢…
constellation (?) …⸣ 30 … ⸢…⸣

1 An earlier version of this paper was presented at the
workshop The Antikythera Mechanism: Science and Inno-
vation in the Ancient World, Leiden, ǟǥ–Ǡǟ June ǠǞǟǡ.

2 The tablet is listed in the third volume of the catalog
of the Sippar collection (Leichty, Finkelstein, and
Walker ǟǧǦǦ, Ǥǡ).

3 For the collection Ǧǡ-ǟ-ǟǦ see Leichty ǟǧǦǤ, xxxiv;
Leichty, Finkelstein, and Walker ǟǧǦǦ, xii.

4 There are two instances of the word lumāšu, ‘zodia-
cal sign’ or ‘constellation’, in damaged or badly un-
derstood passages (obv. 2; rev. i 12′). If the former
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Fig. ǟ BM ǥǤǢǦǦ Obverse.

(3) ⸢xx⸣ dUTU ⸢10+ x u4⸣-mu ana ⸢UGU
x DAH

˘
⸣ 17 u4-mu ana ⸢UGU x DAH

˘[xxx] ⸢EN?⸣ 12 MU.MEŠ ⸢xx⸣ qaq-
qar.ME ⸢x⸣

⸢…⸣ the Sun, ⸢10+ x days you add⸣ to
⸢…⸣, 17 days you add to ⸢…⸣ […] ⸢until?⸣
12 years, …, positions ⸢…⸣

(4) ⸢xx ina NIM xxxxxx IM xxx ina
xxxxx⸣ DAL 17 ⸢u4-mu x ki-i xx⸣ DAL
13 u4-mu LA2 ⸢x⸣

⸢… in … wind … in …⸣ … 17 ⸢days …
when …⸣ … 13 days lacking ⸢…⸣

§2 (5) ⸢xx⸣ IGI ⸢MU.MEŠ xxxxxxxxxxxxxxx
xxxxxxxx⸣-tu4 ŠID-ma KI ⸢xxxxx⸣

⸢…⸣ appearance(?) ⸢years …⸣… you com-
pute, and … ⸢…⸣

(6) [xxx] ⸢xxxxxxxxxx⸣ IGI u ⸢xx⸣ [xxxx]
A ⸢xxx⸣ 26 ⸢xxxx⸣

[…] ⸢…⸣ appearance and ⸢…⸣ […] … ⸢…⸣
26 ⸢…⸣

translation is correct, which is entirely uncertain,
this would suggest a date after about 400 BCE.
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(7) ⸢xxxxxxxxxxxxx⸣ [xxxxxxxxxx] ⸢xx⸣
ki-i ŠU2 ⸢xx⸣ [xxxxxxx]

⸢…⸣ […] ⸢…⸣ when setting(?) ⸢…⸣ […]

(8) ⸢xx KA 30 50 IB2.ME.A GAR⸣-an
⸢xxxxx⸣ [xxxxx] ⸢x 20 x 20 xx⸣ [xxx]

⸢… 30 50 you put down as a prediction.
…⸣ […] ⸢… 20 … 20 …⸣ […]

§3 (9) ⸢IGI u ŠU2⸣ ša2
ddil-bat ana

⸢xxxxxxxx⸣ [xxxx] ⸢1.30 BI xxxxx⸣
[xx]

In order for you to […] ⸢the appearance
and setting⸣ of Venus ⸢…⸣ […] ⸢1.30 …⸣
[…]

(10) 2 u4-mu ⸢TA⸣ IGI 2 U4 ⸢xxx⸣ [xxxxxx
xxx] 30 20 IB2.ME.A GAR-an

2 days ⸢from the appearance, 2 days ⸢…⸣
[…] 30 20 you put down as a prediction.

(11) 4 u4-mu TA IGI ⸢5? u4-mu x⸣ [xxxxxx]
⸢xxx IB2.ME.A GAR-an xx⸣ [xx]

4 days from the appearance, ⸢5? days …⸣
[…] ⸢… you put down as a prediction.
…⸣ […]

(12) ⸢x⸣ u4-mu TA IGI 8 u4-⸢mu xx⸣ [xxxxx]
⸢xxx IB2.ME.A GAR-an x⸣ [xx]

⸢…⸣ days from the appearance, 8 ⸢days
…⸣ […] ⸢… you put down as a predic-
tion. …⸣ […]

(13) ⸢xxxx⸣ ina 8 ⸢MU.MEŠ ki⸣-i 3 ⸢x⸣ [xxx]
⸢x MU x TA⸣ IGI ana ŠU2 IB2.⸢ME.A⸣
[GAR-an xx]

⸢…⸣ in 8 ⸢years when⸣ 3 ⸢…⸣ […] ⸢year
… from⸣ appearance to setting you [put
down] as a ⸢prediction⸣. […]

(14) ⸢xxx 5 xxx⸣ ina 56 ME ⸢2 xx MU xx⸣
[xx] ⸢x⸣ [xxxxxx]

⸢… 5 …⸣ in 56 days ⸢2 … year …⸣ […] 2
⸢…⸣ […]

§4 (15) ⸢xxxxxxxxxx⸣ [xxxxxx] 30 ⸢xxx A xxx⸣
[xxxx]

⸢…⸣ […] 30 ⸢…⸣ […]

(16) [xx] ina ⸢UGU xxxxxxxxxxxx⸣ [xxxx] […] in ⸢…⸣ […]

(17) [xx] ⸢x⸣ 1.20 ⸢xxx BE xxxxxx⸣ [xxxx] […] ⸢…⸣ 1.20 ⸢…⸣ […]

(18) [xx] ⸢MU.MEŠ ki-i xxxxxxx⸣ [xxxxx] […] ⸢years when …⸣ […]

(19) [xx] ⸢xxxxx ½-šu2 xxxxx⸣ [xxxxxxx] […] ⸢… half of it …⸣ […]

(20) [xx] ⸢xxx AN ana MU-ka xx⸣ [xxxxxx
xxxxxx]

[…] ⸢… to your year …⸣ […]

§5 (21) [xxxxxxx] ⸢xxxxxxxxxx⸣ [xxxxxxxx] […] ⸢…⸣ […]
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Fig. Ǡ BM ǥǤǢǦǦ Reverse.

ǟ.Ǡ Reverse

Column i

§6′ (−1′) [x ana x 24 MU.MEŠ] [… to … 24 years.]

(0′) [x A.RA2 x 24] [… times … is 24.]

(1′) ⸢x⸣ A.RA2 [x] 2⸢4⸣ ⸢…⸣ times […] is 2⸢4⸣.

§7′ (2′) ⸢d⸣UTU ana sin 36 MU.⸢MEŠ⸣ Sun to Moon 36 years.

(3′) ⸢18⸣ A.RA2 ⸢2⸣ 36 ⸢18⸣ times ⸢2⸣ is 36.

(4′) 6 A.RA2 6 36 6 times 6 is 36.

§8′ (5′) GU4.UD ana GENNA 1-šu MU.MEŠ Mercury to Saturn 60 years.

(6′) 6 A.RA2 10 1 6 times 10 is 1,0.

(7′) 30 A.RA2 2 1 30 times 2 is 1,0.
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§9′ (8′) GU4.UD ana ds
˙
al-bat-a-nu 1-šu

MU.MEŠ
Mercury to Mars 60 years.

(9′) 15 A.RA2 4 1 15 times 4 is 1,0.

(10′) 6 A.RA2 10 1 6 times 10 is 1,0.

§10′ (11′) 7 MU.MEŠ 10 u4-mu DAH
˘

GU4.UD
IGI

7 years 10 days you add, Mercury ap-
pears.

§11′ (12′) bi-rit lu-maš AN u ILLU Inside a constellation (?): rain and flood,

(13′) ina NIGIN2-u2 when it is surrounded (?).

(14′) 1.12 u4-me ŠE 1 18 1.12 days … 1 18.

§12′ (15′) DU3-⸢uš ?⸣ MU ana MU : 11 u4-⸢mu⸣
IGI u ŠU2

Procedure. Year by year: 11 days, appear-
ance and setting.

§13′ (16′) 19 11 UD NE 1 15 10 u4-mu 19 11 … 1 15 10 days.

(17′) ⸢ki-i ⸣ TA DIB BU GAR AN UD 10
u4-mu

⸢When⸣ from … 10 days.

(18′) ⸢KIMIN x⸣-ti GAR 8 KASKAL.2
⸢GUR UŠ⸣

⸢Ditto …⸣ … 8 … ⸢it turns back the path,
becomes stationary⸣.

§14′ (19′) 2-u2 DAL EDIN Second, … open country.

(20′) 3-u2 BAD SUKUD Third, … high ground.

Column ii

§15′ (1′) ⸢dil-bat ana MUL2.BABBAR⸣ [xx] ⸢Venus to Jupiter⸣ […]

§16′ (2′) GENNA ana MUL2.BABBAR
20 : ⸢50?⸣ [ME DU?]

Saturn to Jupiter 20 : ⸢50?⸣ [days the
deficit (?)]

(3′) 1.29 ⸢MU⸣.[MEŠ xx] 1,29 ⸢years⸣ […]

§17′ (4′) sin ana MUL2.BABBAR 36 2 ME [x] Moon to Jupiter 36, 2 days […]

(5′) : 54 ⸢MU.MEŠ⸣ [xx] : 54 ⸢years⸣ […]
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§18′ (6′) GU4.UD ana dil-bat 40 15 ME DU : Mercury to Venus 40, 15 days the deficit:

(7′) 49 U4 11 34 : 32 49 days 11 34 : 32

§19′ (8′) GENNA ana dil-bat 32 20 ME DIRI Saturn to Venus 32, 20 days the excess.

(9′) 59 ⸢6? ME⸣ DU 59, ⸢6? days⸣ the deficit.

(10′) 1-me 20 ⸢MU⸣.[MEŠ x] ⸢x⸣ 1.30 120 ⸢years⸣ […] ⸢…⸣ 1.30.

§20′ (11′) AN ana ⸢dil ?⸣-[bat xxx] LA2 Mars to ⸢Ve⸣[nus …] lacking,

(12′) 48 ⸢30⸣ [xxx] 24 48 ⸢30⸣ […] 24

(13′) 32 dil-bat ⸢1.12 xx⸣.30 MU.MEŠ 32, Venus,⸢1,12 …⸣.30 years.

§21′ (14′) GENNA ana AN 30 5 DIRI : 45 Saturn to Mars 30; 5 the excess : 45,

(15′) 2.24 MU.MEŠ 2,24 years.

§22′ (16′) GU4.UD ana AN 32 5 DIRI : 48 Mercury to Mars 32, 5 the excess : 48,

(17′) 1.2 ME 30 1.36 1,2 days 30 1,36.

§23′ (18′) ⸢šamaš2(20) ana AN⸣ 2.24 2 ME DU ⸢Sun to Mars⸣ 2,24, 2 days the deficit.

(19′) [xx] 2.15 MU.MEŠ […] 2,15 years.

§24′ (20′) ⸢GENNA?⸣ ana GU4.UD 27 5 ME ⸢Saturn?⸣ to Mercury 27, 5 days,

(21′) 52 MU.MEŠ 52 years.

§25′ (22′) ⸢sin? ana? GU4.UD?⸣ 19 MU.MEŠ ⸢Moon? to Mercury?⸣ 19 years.

Column iii

§26′ (1′) ⸢x⸣ [xxxxxxxxx] ⸢…⸣ […]

(2′) ina ⸢20?⸣ [xxxxxxxxx] In ⸢20?⸣ […]

(3′) UDU.IDIM ⸢x⸣ [xxxxxxx] planet ⸢…⸣ […]

Col. (4′) ul-tu ⸢gǐs⸣[DA xxxxxxx] [copied] from a ⸢wooden⸣ [board …]

(5′) IGI.LA2 [xxxxxxx] checked […]
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Ǡ Philological remarks

Ǡ.ǟ Obverse

(1) IGI u ŠU2: the context implies that IGI and ŠU2 denote the synodic phenomena
of first appearance (IGI) and last appearance (ŠU2). Their Akkadian readings are
probably nanmurtu(IGI), ‘appearance’ and rabû(ŠU2), ‘setting’, respectively.5

ana amārika(IGI.LA2-ka), ‘In order for you to see’, is a common introductory phrase
of Late Babylonian astronomical procedure texts.6

(3) DAH
˘
=was

˙
ābu, ‘to add’ (lit.: ‘to append’).

(4) DAL (or RI?): interpretation unclear.

(8) IB2.ME.A: this logogram, which also appears in obv. 10–12, is not mentioned in the
dictionaries and sign lists. It is probably a variant spelling of qību(ME.A), ‘predic-
tion’. This is suggested by similar logograms in which a verbal root is preceded by
the (pseudo-Sumerian) prefix IB2, e.g. IB2.TAG4 = rīh

˘
tu, ‘remainder’.7

Ǡ.Ǡ Reverse

Column i

(12′) birīt= ‘in between; inside’ (prep.). lumāšu= ‘constellation; zodiacal sign’. Perhaps a
reference to a planet (Mercury?) standing inside a constellation and hence being
surrounded by it (see 13′).

(13′) NIGIN2-u2: the phonetic complement suggests lamû G inf., ‘to surround; be sur-
rounded’.

(14′) The interpretation of this phrase remains unclear.

(16′) 19: the old version of the numeral 9 is used here.

(17′) GAR AN UD: even though the signs are clear, their correct reading is not obvious.
Neither ša2

dUTU, ‘of the Sun’, nor GAR-an UD, ‘you put down …’ appears to yield
a meaningful sentence.

(18′) The damaged sign following KIMIN might be KAL or DIRI.

(19′) DAL: due to the numerous possible readings of this sign the interpretation remains
unclear. EDIN= s

˙
ēru, ‘open country’.

5 For an overview of the synodic phenomena of the
planets see Ossendrijver ǠǞǟǠ, ǣǦ.

6 Ossendrijver ǠǞǟǠ, ǡǤ.
7 CAD, Vol. ǟǢ, R, ǡǡǥb.
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(20′) BAD: due to the numerous possible readings the interpretation remains unclear.
SUKUD=mēlû, ‘height’.

Column ii

(6′) DU: this is the first of several instances where DU appears to signify the subtractive
nature of the correction to the date, as opposed to DIRI (‘to exceed’), which signifies
an additive correction (see rev. ii 8′, 14′, 16′). A very preliminary, pragmatic trans-
lation ‘deficit’ has been adopted for all of these instances. The Akkadian reading of
DU (or GUB) is not clear – perhaps a form of alāku, ‘to go’, or izuzzu, ‘to stand’. This
usage of DU is not attested elsewhere in the astronomical corpus as far as known.
A subtractive number of days to be applied to the date of an astronomical phe-
nomenon is usually marked by LA2 =mat

˙
û, ‘to be lacking’ (thus in BM 41004 rev.)

or its D stem, mut
˙
t
˙
û, ‘to diminish’ (thus in BM 45728 rev. 6).

(7′) 49: the old version of the numeral 9 is used here. UD: reading uncertain; everywhere
else in the text ‘day’ is written u4-mu or ME.

(8′) DIRI: probably to be read itter, 3 m. sg. pres. of (w)atāru G, ‘exceeds’, or the cognate
noun atartu, ‘excess’.

(9′) ⸢6?⸣: the upper three wedges are preserved, which implies a number between 4 and
9 (old version).

(17′) 1 2 ME 30: the correct reading of these signs is not clear. The initial 1 might also be
read ana, ‘to’, and ME might be ūmu, ‘day’, or ME, ‘hundred’. None of these options
appears to yield a plausible interpretation.

(18′) ⸢šamaš2(20) ana AN⸣: only the upper parts are preserved.

(22′) ⸢sin? ana GU4.UD?⸣: sin(30) might also be šamaš2(20).

Column iii

(1′) x: perhaps ina, ‘in’.

(3′) UDU.IDIM: either the word ‘planet’ or the determinative preceding the name of
a planet. UDU.IDIM is followed by two damaged winkelhakens, perhaps part of
MUL2.BABBAR, ‘Jupiter’, or a number 20 or 30. Note however that šamaš2(20), ‘Sun’
and sin(30), ‘Moon’, are never preceded by the determinative for planet.
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ǡ Commentary

The preserved portions of the text can be divided into four distinct parts, here labeled
I (§§1–5), II (§§6′–9′), III (§§10′–14′) and IV (§§15′–26′). Taken together they constitute
some sort of compendium about planetary phenomena. The colophon may hint at this,
since it contains the word or determinative ‘planet’ (rev. iii 3′), but this may also be the
catchline of another, related tablet. The different parts were compiled without much
effort to produce a consistent terminology. For instance, Mars is called AN as well as
ds
˙
al-bat-a-nu, and Jupiter is called dSAG.ME.GAR as well as MUL2.BABBAR. Generally

speaking, the terminology of the text is very similar to that of the Late Babylonian non-
mathematical astronomical and astrological procedures. In particular one may mention
BM 41004 and BM 45728,8 two compendia about planetary phenomena from Babylon,
and TU 11,9 a compendium from Seleucid Uruk with Goal-Year procedures mainly con-
cerned with the Moon. Throughout this paper, several references will be made to these
compendia in order to interpret certain passages. Certain isolated passages from the text
are known from other Late Babylonian astronomical tablets (see below). However, no
duplicates of the text, or of any of its parts, have been identified. In particular, the reverse
deals mainly with planetary conjunctions, a topic that is not addressed in any previously
published Babylonian astronomical procedure text.10

Part I occupies the entire obverse of the fragment. Unlike the reverse, this side of
the fragment is not subdivided into columns. Due to the strong erosion, not much can
be read in part I. It appears that all four partly preserved sections are concerned with the
prediction of the synodic phenomena of the planets, i.e. their first and last appearances,
stations, and oppositions. One or more instances of the word ‘prediction’ (obv. 8–13),
a period expressed in years (obv. 2, 3), a number of days that is ‘lacking’ (obv. 4) and the
instruction ‘(you add) to your year’ (obv. 20) are clear references to the so-called Goal-
Year method. This method is based on the empirical fact that many of the planetary
and lunar phenomena that were observed by Babylonian astronomers repeat in a future
year – the Goal Year – near the same celestial position and calendar date as in the year that
precedes it by a characteristic period which is different for each planet.11 In addition to
the periods, which are expressed in years, the Goal-Year method involves small additive
or subtractive corrections to the dates, which are expressed in days. Apart from synodic
phenomena, the Goal-Year method was also used for predicting when a planet would
pass by one of the so-called Normal Stars, a group of reference stars. For some planets

8 BM ǢǟǞǞǢ: Brack-Bernsen and Hunger ǠǞǞǣ/ǠǞǞǤ;
BM ǢǣǥǠǦ: Britton ǠǞǞǠ.

9 Brack-Bernsen and Hunger ǠǞǞǠ.
10 However, a tablet from Babylon (Hunger, Sachs,

and Steele ǠǞǞǟ, No. ǣǦ) with reports of conjunc-
tions between the Moon and Mars and between the

Moon and Saturn for the period 423–400 BCE con-
firms that Babylonian astronomers were collecting
empirical data on planetary conjunctions.

11 For the Goal-Year method cf. Brack-Bernsen and
Hunger ǠǞǞǠ; Hunger and Sachs ǠǞǞǤ; Gray and
Steele ǠǞǞǦ; Gray and Steele ǠǞǞǧ; Steele ǠǞǟǟ.
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a different period was used for these star passages. Furthermore, even if the same basic
period was used for both types of phenomena, the corrections to be applied to the date
are usually different. Also note that the Goal Year periods and the corrections are to be
understood in relation to the Babylonian luni-solar calendar. That is, the whole number
of years by which a Goal Year period was labeled by the Babylonian astronomers is
always to be understood as a shorthand for a whole number of calendar months, and
the correction in days is to be added to or subtracted from that number of months.

As in the Goal Year procedures BM 41004 and BM 45728, some of these corrections
appear to be mentioned in part I. Section 1 begins with instructions for Jupiter, but
an additive correction of +17 days mentioned in obv. 3 is not attested for that planet.12

However, it is consistent with the expected correction associated with the ǟǠ-year period
for Jupiter’s synodic phenomena (see Tab. ǟ). That period is not known to be a Goal Year
period that was actually used, but it is in fact mentioned in obv. 3. It is also explicitly
assigned to Jupiter in a Seleucid astrological procedure text.13 The planets dealt with
in §2 remain unidentified, but the following section (§3) clearly deals with Venus. In
obv. 13 its standard Ǧ-year Goal Year period is mentioned. This is followed by some in-
struction concerning the interval between Venus’s first appearance and its last visibility
as morning or evening star. Some of the corrections (2 days in obv. 10, 4 days in obv. 11)
might be connected to the Ǧ-year period (compare Tab. ǟ).

Parts II–IV are written on the reverse, which is divided into three columns. In both
parts II and IV each procedure mentions two planets and an associated period expressed
in years, sometimes also other data pertaining to these planets. Part II consists of four
identically structured procedures. Each of them contains three statements, the first of
which is of the type ‘planet 1 to planet 2: p years’. It appears that in part I planet 1 is re-
peated in subsequent sections while planet 2 varies from section to section. All preserved
values of p are ‘pleasant’ numbers, being multiples of 12. Furthermore, the values of p
in §§7′–9′ can all interpreted as the sums of known Goal-Year periods of the involved
planets. The 36 years that are assigned to the Sun and the Moon (§7′) can be interpreted
as 18+ 18 years, twice the saros period, the standard Goal-Year period for lunar and so-
lar eclipses (Tab. ǟ). In §8′, the 60 years that are assigned to Mercury and Saturn equal
1+ 59, where 59 years is the standard Goal-Year period for Saturn and 1 year is a valid,
although unattested Goal-Year period for Mercury (Tab. ǟ). The 60 years assigned to
Mercury and Mars in §9′ equals 13+ 47, where 47 years is the standard Goal-Year period

12 The standard Goal Year periods for Jupiter are 71
years (for synodic phenomena) and 83 years (for star
passages); the associated corrections are of the order
+1 d and +5 d, respectively (Gray and Steele ǠǞǞǦ;
Steele ǠǞǟǟ).

13 TU ǠǞ, rev. Ǡ (Hunger ǟǧǥǤ). This period is not used
as a Goal Year period. It is close to Jupiter’s sidereal
period (11.86 yr).
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for the star passages of Mars and 13 years is a valid, but non-standard Goal-Year period
for Mercury’s synodic phenomena which is mentioned in BM 41004 rev. 16. In §6′ the
names of the planets are not preserved. It seems likely that planet 1 is the Sun, since
this is also the case in §7′. Hence 24 years might be interpreted as 18+ 6 years. However,
a Goal-Year period of 6 years is not attested, so the identification of the planets in §6′

remains unclear.
From an astronomical point of view, the Goal-Year periods of two different planets

do not add up to a meaningful period for conjunctions between these planets (cf. be-
low). Hence there must have been other considerations, presumably astrological or nu-
merological, that motivated the pairwise addition of these periods. The fact that all val-
ues of p are ‘pleasant’ numbers may be seen as confirmation of a numerological mo-
tivation. Furthermore, each procedure continues with two representations of p as the
product of two numbers, i.e. p = q · r. No obvious astronomical significance can be
attached to the values of q and r, except in §7′, where r = 18 (rev. i 3) can be interpreted
as the saros period.

After §9′, column i continues with part III, which consists of five short procedures
(§§10′–14′) that do not appear to have much in common. Part III deviates from parts II
and IV in that the procedures are not concerned with pairs of planets, but with single
planets, or other astronomical, astrological or, perhaps, lexical topics. In §10′ a period of
7 years and an additive correction of 10 days are assigned to Mercury. The formulation
of this rule is entirely analogous to the Goal-Year procedures in BM 41004 (rev.) and
BM 45728 (rev.). Each procedure mentions a period measured in years and a correction
expressed in days. As mentioned, they are to be understood in relation to the Babylonian
luni-solar calendar. That is, the 7 years actually stands for 86 months, the closest whole
number of months corresponding to 7 years, and 10 days is the correction that must
be added to this number of months. This is a valid Goal-Year rule for Mercury (Tab. ǟ),
which is not attested elsewhere as far as known. The correction of +10 days is close to
the value of +9 days obtained from a modern computation.

The meaning of §11′ is largely unclear. The terms ‘rain and flood’ are often men-
tioned together in astronomical diaries and in certain astrological texts concerned with
weather prediction.14 The significance of the numbers in rev. i 13′–14′ is also not clear;
perhaps they represent a period for these phenomena.

In §12′ we are again on solid ground, since this procedure mentions the well-known
interval of approximately 11 days by which the solar year exceeds 12 synodic months.
This parameter, known by the modern term yearly epact, is mentioned or implied in
numerous Babylonian astronomical texts. In an ordinary year of twelve months, i.e.

14 See Hunger ǟǧǥǤ; Sachs and Hunger ǟǧǦǦ; Brack-
Bernsen and Hunger ǠǞǞǠ.
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planet phenomena nr. of elementary
periods

years months (m)
+days (d)

BM 76488

Moon, Sun synodic 223 Psyn 18.030 223 m 18 yr §7′

synodic 669 Psyn 54.089 669 m 54 yr §17′

Mercury synodic 3 Psyn 0.9515 12 m − 7 d 1 yr §8′

synodic 22 Psyn 6.9780 86 m + 9 d 7 yr +10 d §10′

synodic 41 Psyn 13.005 161 m − 5 d 13 yr §9′

synodic 164 Psyn 52.018 643 m +11 d 52 yr §24′

Venus synodic 5 Psyn 7.993 99 m − 5 d 8 yr [… d] §3

star passages 13 Psid 7.997 99 m − 2 d 8 yr [… d] §3

synodic 20 Psyn 31.973 395 m +13 d 32 [yr] §20′

synodic 30 Psyn 47.960 593 m +10 d 48 [yr] §20′?

synodic 75 Psyn 119.899 1484 m −29 d 120 yr §19′

Mars star passages 25 Psid 47.020 581 m +17 d 47 yr […d] §9′

Jupiter synodic 11 Psyn 12.013 148 m +17 d 12 yr +17 d? §1

Saturn synodic 57 Psyn 59.003 730 m − 6 d 59 yr − 6 d §8′, §19′

synodic 86 Psyn 89.022 1101 m − 1 d 89 yr [… d] §16′

synodic 142 Psyn 146.990 1118 m + 2 d 144 yr
(error for 147 yr?)

§21′?

Tab. ǟ Goal-Year type periods for synodic phenomena and Normal Star passages: modern data and BM ǥǤǢǦǦ.

a year without intercalation, the dates of all stellar phenomena, i.e. heliacal risings (‘ap-
pearances’) and settings (‘disappearances’), are shifted by this amount. Hence §12′ is
probably concerned with stellar, not planetary phenomena.

Section 13′ is difficult to interpret and the correct reading of some signs could not
be established. It seems to be concerned with a period, a correction expressed in days,
the Sun and certain planetary phenomena, including retrograde motion and stations
(rev. i 18′). Section 14′ contains two short, numbered statements that appear to be lexical
glosses. Their meaning remains opaque and it is not clear to which of the preceding
statements, if any, they are connected.
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After a break of unknown length column ii continues with part IV which contains
at least ten sections, each concerned with a pair of planets (§§15′–26′). The sequence
of the pairs of planets is different from part II, since planet 2 is repeated in subsequent
sections while planet 1 varies from section to section. Each pair of planets occurs only
once. They may be divided into five distinct types: (ǟ) conjunctions with the Moon
(§§17′, 25′); (Ǡ) conjunctions with the Sun (§23′); (ǡ) conjunctions between two inner
planets (Mercury and Venus) (§18′), (Ǣ) conjunctions between an inner planet and an
outer planet (Mars, Jupiter, or Saturn) (§§15′, 19′, 20′, 22′, 24′); (ǣ) conjunctions between
two outer planets (§§16′, 21′). In every section, the statement ‘planet 1 to planet 2’ is
followed by a period measured in years and a correction for the date analogous to the
one in §10′. With some exceptions, these periods are not attested elsewhere, as far as
known. Unlike the periods from part II, they may have been derived from astronomi-
cal observations. At least some of them are empirically meaningful values of the mean
time between one or more clusters of conjunctions of the involved planets; for a modern
derivation see Appendix A, i.e. Section Ǣ of this article. Note that for conjunctions of
type Ǣ the mean periods for conjunctions are expected to coincide with Goal-Year type
periods of the outer planet, for type Ǡ with those of the planet. The most interesting
periods are therefore those for conjunctions of types ǟ, ǡ, and ǣ, since they should dif-
fer from the Goal-Year periods for individual planets. Sometimes one or two additional
periods are mentioned after the period for conjunctions. Some of these other periods
are identifiable as Goal-Year periods for one of the involved planets – usually the planet
that is mentioned in first position. Other aspects of the procedures in parts IV still defy
interpretation.

In §§15′, 16′, and 17′, planet 2 is Jupiter, while planet 1 is successively equal to Venus,
Saturn, and the Moon. In §15′ the period is not preserved. In §16′ two numbers are
partly preserved, but the units are not. However, the common structure underlying each
of the procedures §§15′–25′ suggests that the first number, 20, is the period measured in
years, while the second one, probably 50, is the correction expressed in days. A period of
20 years is not attested elsewhere in the cuneiform literature in connection with Saturn
or Jupiter. It cannot be interpreted as a sum of Goal-Year periods for these planets as was
done in §§6′–9′. However, 20 years is a correct mean period for successive conjunctions
between these planets (Tab. Ǡ). It is in fact the shortest possible period for conjunctions
between these planets, comprising one elementary period (Pco in Tab. ǡ). As shown in
Tab. Ǡ, it can be expressed as 247 months, the closest whole number of months cor-
responding to 20 years, and a subtractive correction of 41 days. This suggests that the
damaged number 50 (rev. ii 2′) was followed by a subtractive marker, probably DU, be-
cause that logogram appears to be used in this function throughout §§15′–25′ (see the
philological remarks). Rev. ii 3′ mentions a period of 89 years, but the correction in days

ǟǢǞ



̝̒ ǥǤǢǦǦ – ̑ ̩̜̟̞̙̞̒̑̒̑ ̟̝̠̞̙̥̝̓̔̕

pair of planets nr. of (clusters of)
conjunctions

years months, days shift in
longitude

BM 76488

Venus – Jupiter 11 12.013 148 m +17 d +5◦ […] §15′

Saturn – Jupiter 1 19.858 247 m −41 d −117◦ 20 [yr] §16′

Moon – Jupiter 478 35.982 445 m + 2 d +12◦ 36 [yr + ]2 d §17′

Mercury – Venus ? ? ? ? 40 [yr] −15 d §18′

Saturn – Venus 31 32.089 396 m +27 d +32◦ 32 [yr] +20 d §19′

Mars – Venus 8 17.082 211 m + 8 d +29.5◦ […] §20′?

Saturn – Mars 15 30.135 372 m +21 d +5◦ 30 [yr] + 5 d §21′

Mercury – Mars 15 32.030 396 m + 5 d +11◦ 32 [yr] + 5 d §22′

Saturn – Mercury 26 26.914 334 m −33 d −31◦ 27 [yr − ]5 d §24′

Moon – Mercury 235 19.000 235 m +0.2◦ 19 yr §25′

Tab. Ǡ Mean time between multiple conjunctions: modern data and BM ǥǤǢǦǦ.

is missing. This is a valid Goal-Year period for Saturn that can be construed as 30+ 59
years, the sum of two Goal-Year periods for this planet, both of which are mentioned in
BM 41004 rev. 13–14, while 59 years is also mentioned in BM 45728 rev. 13.

Returning to §15′, it can be assumed that the missing period is some multiple of the
mean period for successive clusters of conjunctions between Venus and Jupiter (Pco in
Tab. ǡ). This multiple was probably chosen in such a way that a close return to the same
date and celestial position is achieved. We cannot be sure which period is to be restored,
but a plausible one would be 12 years (see Tab. Ǡ).

In §17′ planet 1 is the Moon. The period of 36 years is a correct value for the mean
duration of 478 conjunctions between the Moon and Jupiter. This multiple may have
been selected because it yields a very close return of the date as well as the celestial posi-
tion (Tab. Ǡ). The second period, 54 years (rev. ii 5′), is not followed by a correction for
the date. It corresponds to another well-known Goal-Year period for the Moon, namely
669 months= 3 saros periods. Since a synodic period for the Moon always consists of
a whole number of months, the absence of a correction expressed in days is expected.

In §§18′–20′ planet 2 is Venus, while planet 1 is set to Mercury, Saturn, and Mars,
respectively. In §18′ a period of 40 years and a subtractive correction of 15 days follows
the statement ‘Mercury to Venus’. This period is not attested elsewhere. Its origin and
justification remain unclear for the moment. The next line contains several numerals
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and, perhaps, the word ‘day’. The interpretation remains unclear. The interval of 49 days
could not be identified.

In §19′ a period of 32 years and an additive correction of 20 days are assigned to
conjunctions between Saturn and Venus. This correction agrees quite well with the ex-
pected value (Tab. Ǡ). The ǡǠ-year period does not produce a particularly close return
to the same date and ecliptical longitude, but neither does any shorter period. A period
of 10 conjunctions= 29.36 years does produce a much closer return of the ecliptical
longitude (shift: −1◦), but the remainder of 0.36 years yields a very large correction for
the dates of about +4.5 months. The next two lines mention two further periods, the
first of which, 59 years, is the standard Goal-Year period for Saturn (Tab. ǟ). The associ-
ated correction of −6 days is also mentioned in BM 41001 rev. 13. The second period,
120 years (rev. ii 10′), is not attested elsewhere. It might be interpreted as a Goal-Year
period for Venus (Tab. ǟ). The expected subtractive correction may have been written in
the gap. The meaning of the other numbers is not clear.

Section 20′ deals with Mars and Venus, but the period is broken away (rev. ii 11′).
A plausible period that might have been mentioned here is 17 years corresponding to
8 conjunctions (Tab. Ǡ). The number 48 (rev. ii 12′) can be readily interpreted as a Goal-
Year period of Venus (Tab. ǟ). The meaning of the other numbers in that line is not
clear. The third and final line of §20′ mentions another valid Goal-Year period of Venus
(32 years) and two damaged numbers whose significance is not clear.

In §§21′–23′ planet 2 is Mars, while planet 1 is set to Saturn, Mercury, and the Sun,
respectively. In §21′ a period of 30 years is assigned to Saturn and Mars. This is a valid
mean period for conjunctions between these planets (Tab. Ǡ). In fact, it corresponds
to the smallest possible multiple of the basic period for conjunctions between these
planets, Pco = 2.0 years, that yields a reasonably close return to the same ecliptical
longitude. However, the reported correction of +5 days differs significantly from the
expected value of about +21 d.15 The significance of the number 45 is unclear. The
period of 144 years mentioned in the next line (rev. ii 15′) is neither a Goal-Year period
of Saturn, nor of Mars. Note however that 147 years are a valid non-standard Goal-Year
period of Saturn which is attested in BM 41001, rev. 15 (see also Tab. Ǡ).

In §22′ a period of 32 years is assigned to Mercury and Mars. This is a valid period for
conjunctions between these planets. The correction of +5 days agrees with the expected
value (Tab. Ǡ). The meaning of the other statements is not clear (cf. the philological
remarks).

The period of 144 years assigned to the Sun and Mars in §23′ is problematic. Since
planet 1 is the Sun, the mean periods for conjunctions should equal a Goal-Year type

15 Its magnitude does agree with the expected shift
along the ecliptic measured in degrees, but it seems

unlikely that the correction has this deviating mean-
ing here.
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period of Mars, but 144 years is not one of them. The period of 135 years (rev. ii 19′)
remains unidentified; as far as known it is not a valid Goal-Year period of any planet.

In §§24′–25′ and presumably also in the missing first section of column iii, planet
2 is Mercury. In §24′, 27 years is assigned to Saturn and Mercury, a valid mean period
for conjunctions between these planets (Tab. Ǡ). In the next line (rev. ii 21′) a period
of 52 years is mentioned. This is a valid Goal-Year period for Mercury (Tab. ǟ). The
associated correction for the date is omitted. In §25′ planet 1 is probably the Moon.
The period of 19 years is a valid mean period for conjunctions between the Moon and
Mercury (Tab. Ǡ).

In part IV planet 2 was successively equal to Jupiter, Venus, Mars, and Mercury.
This leaves out Saturn, the Moon and the Sun as possible candidates for planet 2 in the
sections that are missing in column iii between §25′ and §26′. It can be assumed that
planet 1 was chosen in such a way that no pair of planets is repeated.

Ǣ Appendix A: mean periods for planetary conjunctions

Two planets are said to be in conjunction when they have the same ecliptical longitude
for the observer. Since this event is affected by the varying velocities of both planets, the
time between successive conjunctions is not constant. However, a mean period, say Pco,
can be derived from the sidereal periods of the involved planets by assuming that they
move along the ecliptic at their mean velocity:

Pco =
P1P2

|P2 − P1|
.

Here P1 and P2 are suitably chosen sidereal periods of planets 1 and 2, respectively. For
the Moon and the outer planets (Mars, Jupiter, Saturn), the actual sidereal periods are
to be used here. For the inner planets (Mercury, Venus) the appropriate sidereal period
is that of the Sun (1 year), i.e. the motion of these planets with respect to the mean Sun
is ignored. Hence the formula does not work for conjunctions between Mercury and
Venus, because the denominator vanishes in that case (P1 = P2 = 1 yr), but cf. below.
The resulting values of Pco and the associated mean displacements along the ecliptic are
compiled in Tab. ǡ. By computing 360◦/shift one can assess how many conjunctions
are needed for a close return to the same ecliptical longitude. The resulting periods,
converted to mean synodic months and a correction expressed in days, may then be
compared with the periods mentioned in the text (Tab. Ǡ).

Note that the time between two actual, individual conjunctions is subject to vari-
ation and can differ significantly from the values of Pco thus computed. Moreover, all
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Mercury Venus Mars Jupiter Saturn

Pco [yr] shift Pco [yr] shift Pco [yr] shift Pco [yr] shift Pco [yr] shift

Moon 0.0809 +29.1◦ 0.0809 +29.1◦ 0.0779 +14.9◦ 0.0753 +2.28◦ 0.0750 +0.92◦

Mercury 0.90 −36◦ 2.1353 +48.7◦ 1.0921 +33.1◦ 1.0351 +12.7◦

Venus 2.1353 +48.7◦ 1.0921 +33.1◦ 1.0351 +12.7◦

Mars 2.2354 +67.8◦ 2.0090 +24.6◦

Jupiter 19.858 −117◦

Tab. ǡ Mean periods and mean longitudinal shifts for planetary conjunctions (modern values).

five planets (Mercury, Venus, Mars, Jupiter, and Saturn) experience retrogradations, i.e.
they occasionally change their direction of motion along the ecliptic. As a result, several
conjunctions may occur in rapid succession within a single interval Pco. Hence Pco repre-
sents the mean time between successive clusters of conjunctions rather than individual
conjunctions. A modern table with computed conjunctions published by Meeus reveals
that up to five conjunctions may form a single cluster in the case of Mercury and Venus
or Mercury and Mars.16 For other conjunctions involving Mercury, Venus, Mars, Jupiter
or Saturn up to three conjunctions may form a single cluster. The only exception is the
Moon, which moves much more rapidly than the planets, so that it never experiences
more than one conjunction within the interval Pco. The correctness of the results forPco in Tab. ǡ is confirmed by the data in the tables of Meeus.17 As mentioned, the ap-
proach followed here does not work for conjunctions between Mercury and Venus. The
tables of Meeus reveal that the mean time between successive clusters of conjunctions
between these planets is 0.90 yr. That number and the associated mean longitudinal
shift are shown in italics in Tab. ǡ.

16 Meeus ǟǧǧǣ, ǡǧ–ǢǤ. 17 Meeus ǟǧǧǣ, ǡǧ–ǢǤ.
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Hermann Hunger

The So-Called Report on Seasonal Hours (K ǠǞǥǥ+):
A New Interpretation

Summary

The tablet K 2077+ was when first published taken to be an example of the use of seasonal
hours in Babylonian astronomy. Since then, it has been joined to BM 54619. This article
provides a new edition and discussion of the text which can now be seen to be not describing
seasonal hours but can better be understood as giving a scheme for the seasonally varying
motion of the sun.

Keywords: Daylight and night; seasonal hour; motion of sun and moon; astronomical re-
port; Assyrian royal correspondence; Assyrian astronomy.

Die Tafel K 2077+ wurde bei ihrer Erstpublikation als Beispiel für die Verwendung von
Temporalstunden in der babylonischen Astronomie angesehen. Inzwischen wurde sie mit
BM 54619 zusammengefügt. Dieser Beitrag stellt eine Neuedition und Diskussion des Tex-
tes vor, der nun weniger als Beschreibung der Temporalstunden denn als ein Schema für
jahreszeitlich variierende Sonnenbewegungen angesehen werden kann.

Keywords: Dauer von Tag und Nacht; Temporalstunden; Sonnen- und Mondbewegung;
astronomischer Bericht; assyrische Hofkorrespondenz; assyrische Astronomie.

I thank the Trustees of the British Museum for permission to publish BM 54619.

John Steele, Mathieu Ossendrijver (eds.) | Studies on the Ancient Exact Sciences in Honor of
Lis Brack-Bernsen | Berlin Studies of the Ancient World ǢǢ
(ISBN ǧǥǦ-ǡ-ǧǦǟǤǡǦǢ-ǣ-ǣ; URN urn:nbn:de:kobv:ǟǟ-ǟǞǞǠǢǤǟǧǞ) | www.edition-topoi.de

ǟǢǧ

https://www.edition-topoi.org/


̢̘̝̞̞̑̕ ̢̘̥̞̗̕

ǟ Introduction

The tablet K 2077+ was published by E. Reiner and D. Pingree.1 Since then, an additional
fragment (BM 54619) was joined to it (Figs. ǟ, Ǡ, ǡ, and Ǣ). The outline of the tablet is
now almost complete; due to extensive damage of the obverse, however, the text is still
only partly understandable.

The two parts of the tablet belong today to two different collections in the British
Museum, one from Nineveh, the other from Babylon. However, not infrequently tablets
from other findspots have ended up in these collections. The main text is written in
Babylonian script and in the Neo-Babylonian variant of Akkadian. Such a tablet could
have been written in Babylonia and intended to be sent to the Assyrian king. It could
also have been written by a Babylonian living in Nineveh. The colophon, however, is
written in Assyrian script, which was not used after the end of the Assyrian empire.
Also, the dating by eponyms is characteristic of Assyria. It is therefore very likely that
the tablet was finished and found in Nineveh. The eponym, Bel-̌sadu֓a, had the office
in 650 BC.

Ǡ Transliteration2

Ǡ.ǟ Obverse

(1) [DIŠ] ⸢i⸣-na ituŠ[U UD-15-KAM dUTU i-na šu-ut dEn-líl i-na MURU]B4
? mulAL-LUL

GUB-az ù dSin

(2) [i]-na šu-ut ⸢d⸣[É-a i-na ....] ⸢x⸣ mulSUH
˘

UR-MÁŠku
6 GUB-ma 8 DANNA u4-mu 4

DANNA GE6

(3) UD-15-KAM dUTU 1 UŠ 20 NINDA šá u4-mu GIN-ak-m[a] ⸢2/3⸣ DANNA qaq-qa-ru
10 UŠ u4-mu ik-te-ri

(4) šá-ni-ti UD-15-KAM 2/3 DANNA 50 NINDA LAL-t
˙
i GIN-ak šá-lul-tú UD-15-KAM

18 UŠ 20 NINDA GIN-ak

(5) 3 UD-15-KAMme GIN-ak-ma 1 DANNA u4-mu i-ker-ri šá 3 UD-15-KAMměs 1 2/3

DANNA ⸢7⸣ [UŠ 30 NINDA] ⸢a⸣-lak šá dUTU

(6) 12-ú šá u4-mu 15 UDměs GIN-ak a ⸢x x⸣ [x x x (x)] ⸢x i ? x -ru?⸣-ú 12-ú ⸢10?⸣ [x x x] LAL-t
˙
i

1 Pingree and Reiner ǟǧǥǢ/ǟǧǥǥ. 2 [....] stands for a break of unspecified length; where
the size of a break can be estimated, x stands for one
missing sign.
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̤̘̕ ̣̟-̜̜̓̑̔̕ ̢̢̠̟̤̕ ̟̞ ̣̣̟̞̜̑̑̕ ̢̘̟̥̣

Fig. ǟ K. ǠǞǥǥ + ǡǥǥǟ + ǟǟǞǢǢ + BM ǣǢǤǟǧ Obverse.

Fig. Ǡ K. ǠǞǥǥ + ǡǥǥǟ + ǟǟǞǢǢ + BM ǣǢǤǟǧ Obverse, left side.
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̢̘̝̞̞̑̕ ̢̘̥̞̗̕

(7) ul-tu UD-15-KAM šá ituŠU EN UD-⸢30⸣-[KAM šá ituIZI 1 DANNA u4-mu LUGUD-
DA-ma a-na 7 DANNA u4-mu] GUR-ár

(8) šá 7 DANNA 12-šú 17 UŠ 30 NINDA ⸢x⸣ [.... 1 DANNA u4-mu LUG]UD-DA-ma

(9) a-na 6 DANNA u4-mu GUR-ár ⸢šá⸣ [....] ituAPIN

(10) 1 DANNA u4-mu LUGUD-DA-ma a-[na 5 DANNA u4-mu GUR-ár ....] ⸢x x⸣ [x]

(11) 12-ú? šá 3 UD-15-KAMměs ⸢x⸣ [....]

(12) DIŠ ina ituAB UD-15-KAM 4 [DANNA u4-mu 8 DANNA GE6 ....]

(13) 3 UD-15-KAMměs 10 UŠ ⸢x⸣ [....]

(14) ina 5 DANNA u4-mu 12 U[Š 30 NINDA ....]

(15) ina 6 DANNA u4-mu 15 UŠ [....]

(16) ina ⸢7⸣ DANNA u4-mu 17 UŠ 30 NIN[DA ....]

(17) 2/3 DANNA 17 UŠ 30 NINDA 15 UŠ [12 UŠ 30 NINDA

(18) 19 UŠ 10 NINDA 16 UŠ 40 NINDA 14 UŠ ⸢10⸣ NINDA 1[1 UŠ 40 NI]NDA

(19) 18 UŠ 20 NINDA 15 UŠ 203NINDA 13 UŠ 20 NINDA 10 [UŠ] ⸢50 NINDA⸣

(20) 3 UD-15-KAMme 3 UD-15-KAMme 3 UD-15-KAMme 3 UD-15-KAMme

(21) šá 8 KAS u4-mu šá 7 KAS u4-mu šá 6 KAS u4-mu šá 5 KAS u4-mu

(lines 17 to 21 continued)

(17) 10 UŠ 12 UŠ 30 NINDA 15 UŠ 17 UŠ 30 NINDA]

(18) ⸢10 UŠ 50 NINDA⸣ ⸢13 UŠ 20⸣[NINDA] ⸢15 UŠ⸣[50 NINDA] 18 UŠ [20 NINDA]

(19) 11 UŠ 40 NINDA 14 UŠ 10 NINDA 16 UŠ 40 NINDA 19 UŠ [10 NINDA]

(20) 3 UD-15]-KAMme 3 UD-15-KAMme 3 UD-15-KAMme 3 U[D-15-KAMme]

(21) šá 4 KAS u4-mu šá 5 KAS u4-mu šá 6 KAS u4-mu šá 7 KAS u4-mu

3 (Obv. 19) The same error occurs in rev. right col. 20
in the same number.

ǟǣǠ



̤̘̕ ̣̟-̜̜̓̑̔̕ ̢̢̠̟̤̕ ̟̞ ̣̣̟̞̜̑̑̕ ̢̘̟̥̣

Ǡ.Ǡ Reverse

Ǡ.Ǡ.ǟ Right column

(1) an-nu-ú tal-lak-tú šá dUTU TA KASKALII šu-ut dEn-l[íl]

(2) EN KASKALII šu-ut dÉ-a TA KASKALII šu-ut dÉ-a

(3) EN KASKALII šu-ut dEn-líl TA dUTU-È EN dUTU-ŠÚ-A

(4) TA dUTU-ŠÚ-A EN dUTU-È 12 DANNA qaq-qar mi-ših
˘
-ti a-šar-ri

(5) ki-s
˙
ip-ta-šú šá-lim-ti áš-t

˙
ur qaq-qar ul ma-al-la a-h

˘
a-meš šú-ú

(6) ut-ru ù mut
˙
-t
˙
i-e li-ik-s

˙
i-pu-ma liq-bu-nim-ma

(7) ina pi-i lu-še-eš-mi LUGAL i-de ki-i dib-bi an-nu-tì

(8) ina t
˙
up-pi la šat

˙
-ru ù ina pi-i UNme la ba-šu-ú

(9) ina t
˙
up-pi lúŠAMAN-LÁ ul i-šem-mi-i ú-⸢x⸣ [x x]

(10) lúSAG LUGAL h
˘
at-tu-ú ⸢lu⸣-kal-li-mu ⸢x⸣ [....]

(11) mi-ših
˘
-ti KIměs ù bi-rit ⸢x⸣ [....]

(12) an-na-a-ti ina pi-i lu-šá-[....]

(13) tal-lak-ti dSin dUTU dUDU-IDIMměs [....]

(14) di-ri u na-dan GISKIM ina lìb-bi in-na[m-m]a-ru

(15) 2/3 DANNA 15 UŠ 10 UŠ 15 UŠ

(16) 19 UŠ 10 NINDA 14 UŠ 10 NINDA 10 UŠ 50 NINDA 15 UŠ 50 NINDA

(17) 18 UŠ 20 NINDA 13 UŠ 20 NINDA 11 UŠ 40 NINDA 16 UŠ 40 NINDA

(18) 17 UŠ 30 NINDA 12 UŠ 30 NINDA [ 12] UŠ 30 NINDA 17 UŠ 30 NINDA

(19) 16 UŠ 40 NINDA 11 UŠ 40 NINDA [ 13 U]Š 20 NINDA 18 UŠ 20 NINDA

(20) 15 UŠ 204NINDA 10 UŠ 50 [NINDA] [ 14 U]Š 10 NINDA 19 UŠ 10 NINDA

(21) tal-lak-tú šá dUTU [x] di-ib-bu
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Ǡ.Ǡ.Ǡ Left column

(1) 16 UŠ 8 UŠ

(2) 15 UŠ 20 NINDA 8 UŠ 40 NINDA

(3) 14 UŠ 40 NINDA 9 UŠ 20 NINDA

(4) 14 UŠ 10 UŠ

(5) 13 UŠ 20 NINDA 10 UŠ 40 NINDA

(6) 12 UŠ 40 NINDA 11 UŠ 20 NINDA

(7) 12 UŠ 12 UŠ

(8) 11 UŠ 20 NINDA 12 UŠ 40 NINDA

(9) 10 UŠ 40 NINDA 13 UŠ 20 NINDA

(10) 10 UŠ 14 UŠ

(11) 9 UŠ 20 NINDA 14 UŠ 40 NINDA

(12) 8 UŠ 40 NINDA 15 [UŠ 20 NINDA]

(13) an-nu-ú šá dSin DIB-D[IB x x]

(14) EN-NUN u šit-ti lu-[x x]

(15) lu-še-eš-[mi]

Ǡ.Ǡ.ǡ Upper edge (in Neo-Assyrian script)

(1) [.... Ix]-dGu-la lúA-ZU

(2) [itux U]D-15-KAM [li]m-mu IdEN-KUR-u-a

4 (Rev. right col. 20) The same error occurs in obv. 19
in the same number.

5 (Upper edge, 2) Or: [UD x] + 2.
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Fig. ǡ K. ǠǞǥǥ + ǡǥǥǟ + ǟǟǞǢǢ + BM ǣǢǤǟǧ Reverse.

Fig. Ǣ K. ǠǞǥǥ + ǡǥǥǟ + ǟǟǞǢǢ + BM ǣǢǤǟǧ Reverse, left side.
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ǡ Translation

ǡ.ǟ Obverse

(1) [¶] In month IV, [on the ǟǣth day .... the sun] stands in [the (stars) of Enlil in the
midd]le? of Cancer, and the (full) moon

(2) stands in the (stars) of [Ea in ....] Capricorn, and there are 8 bēru day, 4 bēru night.

(3) (In) 15 days, the sun goes 1 UŠ 20 NINDA (= 1◦ 20′) per day, and 2/3 bēru (= 20◦)
is the qaqqaru. 10 UŠ the day became shorter.

(4) The second ǟǣ-day (period), it goes 2/3 bēru less 50 NINDA (= 19◦ 10′). The third
ǟǣ-day (period), it goes 18 UŠ 20 NINDA.

(5) 3 ǟǣ-day (periods) it goes, and the day becomes shorter (by) 1 bēru. Of 3 ǟǣ-day
(periods), 1 2/3 bēru 7 [UŠ 30 NINDA] (= 57◦ 30′) is the going of the sun.

(6) One-twelfth of a day it goes (in) 15 days .... [....] .... one-twelfth [....] becomes less.

(7) From the ǟǣth day of month IV until the ǡ[Ǟth day of month V the day becomes
shorter (by) 1 bēru, and the day] returns [to 7 bēru.]

(8) Of 7 bēru, one-twelfth (is) 17 UŠ 30 NINDA [.... the day] becomes shorter [(by)
1 bēru,] and

(9) the day returns to 6 bēru .... [....] month VIII

(10) the day becomes shorter (by) 1 bēru, and [the day returns to 5 bēru ....] .... [....]

(11) One-twelfth? of 3 ǟǣ-day (periods) .... [....]

(12) ¶ In month X, the ǟǣth day, 4 [bēru day, 8 bēru night ....]

(13) 3 ǟǣ-day (periods) 10 UŠ .... [....]

(14) At 5 bēru day, 12 UŠ [30 NINDA ....]

(15) At 6 bēru day, 15 UŠ [....]

(16) At 7 bēru day, 17 UŠ 30 NINDA [....]

(17) 20◦ 17◦30′ 15◦ 12◦30′ 10◦ 12◦30′ 15◦ 17◦30

(18) 19◦10′ 16◦40′ 14◦10′ 11◦40′ 10◦50′ 13◦20′ 15◦50′ 18◦20′

ǟǣǤ
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(19) 18◦20′ 15◦50′! 13◦20′ 10◦50′ 11◦40′ 14◦10′ 16◦40′ 19◦10′

(20) 3 ǟǣ-days 3 ǟǣ-days 3 ǟǣ-days 3 ǟǣ-days 3 ǟǣ-days 3 ǟǣ-days 3 ǟǣ-days 3 ǟǣ-days

(21) of 8 bēru
day

of 7 bēru
day

of 6 bēru
day

of 5 bēru
day

of 4 bēru
day

of 5 bēru
day

of 6 bēru
day

of 7 bēru
day

ǡ.Ǡ Reverse

ǡ.Ǡ.ǟ Right column

(1) This is the course of the sun from the path of Enlil

(2) to the path of Ea, from the path of Ea

(3) to the path of Enlil. From sunrise to sunset,

(4) from sunset to sunrise 12 bēru qaqqaru is the measurement of the places?.

(5) I wrote down its complete computation. The qaqqaru is not equal to each other.

(6) Let them compute the excess and the deficiencies, and let them tell me, and

(7) I will let it be heard. The king knows that these words

(8) are not written on a tablet and do not exist in the mouth of people;

(9) the apprentice scribe does not hear (them) from a tablet .... [....]

(10) I will show (it?) the Hittite? ša rēš šarri-official [....]

(11) the measurement of the places? and the interval [....]

(12) these I will [....] by mouth? [....]

(13) the course of moon, sun, planets [....]

(14) intercalations and giving of signs will be seen in it.

(15) 20◦ 15◦ 10◦ 15◦

(16) 19◦ 10′ 14◦ 10′ 10◦ 50′ 15◦ 50′

(17) 18◦ 20′ 13◦ 20′ 11◦ 40′ 16◦ 40′

(18) 17◦ 30′ 12◦ 30′ 12◦ 30′ 17◦ 30′

ǟǣǥ



̢̘̝̞̞̑̕ ̢̘̥̞̗̕

(19) 16◦ 40′ 11◦ 40′ 13◦ 20′ 18◦ 20′

(20) 15◦ 50′! 10◦ 50′ 14◦ 10′ 19◦ 10′

(21) The course which the Sun […]....

ǡ.Ǡ.Ǡ Left column

(1) 16◦ 8◦

(2) 15◦ 20′ 8◦ 40′

(3) 14◦ 40′ 9◦ 20′

(4) 14◦ 10◦

(5) 13◦ 20′ 10◦ 40′

(6) 12◦ 40′ 11◦ 20′

(7) 12◦ 12◦

(8) 11◦ 20′ 12◦ 40′

(9) 10◦ 40′ 13◦ 20′

(10) 10◦ 14◦

(11) 9◦ 20′ 14◦ 40′

(12) 8◦ 40′ 15◦ 20′

(13) This (is) what the moon pa[sses?]

(14) Watch and sleep? let me [....]

(15) I will let [hear?.]

ǡ.Ǡ.ǡ Upper edge (across both columns)

(1) [....]-Gula, the scribe.

(2) [Month ....,] 1st? day, eponym Bel-̌sadu֓a.
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Ǣ Philological notes

Ǣ.ǟ Obverse

(1)
(2)

}

restored in analogy to statements in mulApin.

(3) UD-15-KAM is to be read šapattu, as can be seen from the fem. adjectives in line 4.

(6) seems to say that the sun moves 1/12th of a day in 15 days.

Ǣ.Ǡ Reverse right column

(4) a-šar-ri seems to be an unknown word. Its measurement (miših
˘
tu) is 12 bēr qaqqaru,

i.e. a full circle – which is approximate for the distance from one sunrise to the
next. miših

˘
tu occurs again several lines later, followed by KIměs. Since KIměs can be

read ašrī, I propose to see in a-šar-ri an unconventional writing for ašrī (a similarly
strange writing is found in ma-al-la for mala in line 5). KI is the usual term for
‘place, position’ in astronomical texts; it can even be translated as ‘longitude’ in
a technical context. While qaqqaru is the more frequent reading of KI in late texts,
ašru is not excluded here.

(8) la ba-šu-ú: ba here is clearly different from ma (e.g., in line 6) and bašû makes sense:
the theory proposed by the writer cannot be found anywhere else.

(10) like Reiner and Pingree, I cannot explain the presence of a Hittite official here.
PA-tu-ú yields no better meaning.

(21) This line is still in Babylonian script (see the sign šá), and it begins flush with the
table preceding it. It is therefore not to be connected to the following two lines on
the edge which are in Assyrian script (see the sign LÚ). [x]-di-ib-bu could be a verb
in a relative clause: which the sun .... Unfortunately, I cannot find a meaningful
restoration.

Ǣ.ǡ Reverse left column

(13)
(14)

}

maybe ‘watch’ is here in contrast to ‘sleep’ because knowing how long one has
to wait for the moon means knowing when one can go to sleep.
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Ǣ.Ǣ Upper edge

A.ZU can be a logogram for ‘scribe’; on the other hand, names containing Gula are
likely to be those of physicians so that the more common meaning ‘physician’ may be
intended here. Since the colophon is in Neo-Assyrian script, it may not contain the name
of the writer of the main text but rather its owner. The name Arad-Gula in ABL 1109
r. 6, mentioned by Reiner, is to be read Arda-Mullissi according to collation in SAA 10,
113 r. 5.

ǣ Discussion

As was recognized by Pingree, the numbers in the tables at the end of obverse and reverse
would be the lengths of seasonal hours measured in UŠ. This implies that UŠ is intended
to be a measure of time. If we had only the table, this would be a convincing explanation,
especially since there is another text apparently giving seasonal hours, the Ivory Prism
BM 123340 in the British Museum.6 However, there are problems with the statements
in the second section of the obverse (which were not known to Pingree). Here the sun
is explicitly said to move (GIN-ak etc.). The section starts with the daily movement of
the sun at the time of the summer solstice, which is given as 1 UŠ 20 NINDA. Line 3
further states that the amount by which the sun moves in the ǟǣ-day period following
the summer solstice is 2/3 bēr qaqqaru. qaqqaru cannot be explained as a time measure-
ment because it would be superfluous. Also, all other passages with bēr qaqqaru in other
texts refer to distances, not to time spans.7 The following lines make a clear distinction
between time and distance, in spite of using the same units UŠ and NINDA (UŠ and
bēru are originally length measures which are also used for time).

2/3 bēru time is equivalent to 80 of our minutes, which is the length of one seasonal
hour at summer solstice, under the assumption of a ratio of 2 : 1 of the longest to the
shortest daylight. But 2/3 bēru is also, according to our text, the distance traveled by the
sun in the 15 days after summer solstice. In line 6, this numerical equivalence is even
explicitly stated: one-twelfth of a day (the sun) goes (in) a ǟǣ-day period. Unfortunately,
the rest of the line is too broken to be understood. In line 8 one-twelfth of the duration
of daylight, 7 bēru, is again taken to be the distance traveled by the sun; here too the
rest of the line is unfortunately missing. It should however be remembered that at the
beginning of the description of the sun’s course in line 3 (see above) a daily movement
of 1 UŠ 20 NINDA, which is obviously one-fifteenth of 2/3 bēru, is attributed to the sun.
This is not related to a time interval.

6 Hunger and Pingree ǟǧǧǧ, ǟǟǠ–ǟǟǣ (with earlier
literature).

7 CAD, Vol. ǟǡ, Q, ǟǟǥa–ǟǟǧa, s.v. qaqqaru A mng. ǡ;
CAD, Vol. Ǡ, B, ǠǞǧb–ǠǟǞa, s.v. bēru A s. mng. ǟb.
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The movement (‘going’) of the sun cannot be an amount of time; it has to move a
certain distance. One could assume that the distance is meant which the sun moves in
one-twelfth of a day (i.e. one seasonal hour). But this would be just a part of the daily
movement parallel to the equator.

In the second section of the text, the movements of the sun in each of the three
ǟǣ-day periods are added up to its movement in 45 days.

Following this pattern one can add all the numbers in the table, and one arrives at
360 UŠ, or one full circle. In the right column of the reverse the ‘measurement’ of the
daily movement of the sun from sunrise to sunrise is given as 12 bēr qaqqaru or 360◦.
qaqqaru here is clearly a distance. This supports the interpretation of qaqqaru in obv. 3
that the numbers of the table are not seasonal hours but distances which the sun is
assumed to move, arranged by ǟǣ-day periods.

If the text had wanted to describe seasonal hours, there would have been no need
to explain the sun’s movement in distance. A table similar to those in Enūma Anu Enlil
XIV would have sufficed. But in this text the decrease in the duration of daylight is taken
as justification for the decreasing distance which the sun supposedly moves in a ǟǣ-day
period.

The first lines of the reverse can be seen as a description of the path of the sun both in
the ecliptic (from the path of Enlil to the path of Ea and back) and parallel to the equator
(from sunrise to sunset to sunrise). Both are circles (approximately) and therefore 360◦

or 12 bēru in length.
Under the assumptions that

ǟ. the course of the sun in one year equals 12 bēru
Ǡ. the ratio of longest to shortest daylight is 2 : 1
ǡ. the velocity of the sun varies proportionally to the duration of daylight

then the distances which the sun travels in ǟǣ-day periods must be those given in the
table.

Whether this was the reasoning of the author can however be doubted.
If one expresses the velocity of the sun in a varying time unit, in our text in one-

twelfth of daylight, then the distance traveled by the sun will necessarily vary with the
duration of daylight. Due to the relation between the units, the numbers for one-twelfth
of daylight and for the sun’s progress in 15 days are the same. This need not be deliberate;
the duration of daylight is given at ǟǣ-day intervals already in mulApin and EAE XIV.
However, one-twelfth of daylight, i.e. one seasonal hour, is unusual for Mesopotamia.
The question is whether it really is intended as a unit for time measurement. The text
considers the result of dividing the duration of daylight by 12 as the ‘going of the sun’,
i.e. as a distance.
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One can object to this mixing of time and space measurement. I do however draw
attention to the easy interchanging of months and zodiacal signs in (admittedly later)
astronomical texts.

Due to damage on the obverse of the tablet, the reasoning of the author (if any-
thing of this kind was written there) cannot be reconstructed. In my interpretation, he
assumed that the sun moves in the ecliptic twice as fast at summer solstice than at win-
ter solstice. This may seem unbelievable; but the assumption of a ratio of 2 : 1 between
longest and shortest daylight is also far off the real values.

It is not surprising that the author insists that his knowledge is found nowhere else
(rev. 7–9). Unfortunately, the applications of his theory for the calendar (intercalations)
and for omens, to which he refers in rev. 10–14, are not clear because of breaks in the
tablet.

ǣ.ǟ Reverse left column

This contains another table,8 this time varying between a maximum of 16 UŠ and a min-
imum of 8 UŠ. There are twice 12 lines, so that the difference from line to line is 2/3 UŠ
or 40 NINDA. As mentioned in the subscript, this table refers to the moon. The values
correspond to tables in mulApin (II ii 43–iii 12)9 or tablet XIV of Enūma Anu Enlil (ta-
ble D)10 giving the interval from sunset to moonset at new moon, and from sunset to
moonrise at full moon, respectively, for every month of a schematic year.

8 Already mentioned in Hunger and Pingree ǟǧǧǧ,
ǟǟǣ–ǟǟǤ.

9 Hunger and Pingree ǟǧǦǧ, ǟǞǟ–ǟǞǡ.
10 Al-Rawi and George ǟǧǧǟ/ǟǧǧǠ, ǣǦ–ǣǧ.
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Ancient Greek Sundials and the Theory of Conic
Sections Reconsidered

Summary

In this article, a new aspect of a possible connection between the development of ancient
Greek and Roman sundials and the history of conic sections is analyzed: On conical sun-
dials, a conic section occurs at the edge between the plane top surface and a conical surface
which is most commonly used in sundials as the shape of the dial face. Based on an anal-
ysis of ǡD models of conical sundials, this paper argues that the curve is not the result of
a method of shaping the conical surface, but rather the basis to do so. A method is given
by which the curve can be drawn approximately by connecting points. The latter can be
found using a geometrical construction. This procedure suggests that craftsmen who built
sundials had basic knowledge of the geometry of cones and conic sections.

Keywords: Ancient sundial; conic section; theory of conic sections; manufacturing; history
of mathematics; history of technology; ǡD model.

Im Fokus steht ein neuer Aspekt der möglichen Verbindung zwischen der Entwicklung an-
tiker griechischer und römischer Sonnenuhren und der Geschichte der Kegelschnitte: Bei
konischen Sonnenuhren tritt an der Kante zwischen der ebenen Oberseite und einer ke-
gelförmigen Fläche, der häufigsten Variante der Schattenfläche, ein Kegelschnitt auf. Basie-
rend auf einer Analyse von ǡD-Modellen konischer Sonnenuhren wird dafür argumentiert,
dass die Kurve nicht das Resultat einer Methode der Ausführung der Fläche ist, sondern
ihre Grundlage. Eine Methode zum approximativen Zeichnen der Kurve wird angegeben,
bei der geometrisch konstruierte Punkte verbunden werden. Die Prozedur legt nahe, dass
Handwerker der Sonnenuhrenherstellung Grundkenntnisse der Geometrie des Kegels und
der Kegelschnitte besaßen.
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ǟ Introduction

It is neither new nor ill-founded to think about the connection between the origin of
ancient Greek sundials and the history of the theory of conic sections.1 Besides the quite
obvious presence of conic sections as the lines of the daily motion of the shadow of the
tip of a gnomon on a plane surface that are usually represented on planar sundials for
some special days in the year, such lines appear in a completely different context in
one other type of ancient Greek sundials: For the largest group of sundials, the shadow
receiving surface is part of the surface of a right cone whose axis directs towards the
poles. Since all those sundials have a plane top surface that is parallel to the horizon, the
intersection of those two surfaces is a non-circular conic section. But has this curve been
recognized as such? This analysis aims to reconstruct the role of this conic section in the
geometry of conic sundials and its relation to Greek theories of conic sections. Contrary
to earlier approaches, this analysis is based on an evaluation of the material evidence.

Ǡ The geometry of conical sundials

With the exception of a small group from the islands of Rhodes and Kos, and a handful
of other objects, almost all sundials with conical shadow receiving surface share the same
design. They consist of a stone block whose south facing front face is divided into two
parts. Whereas the upper part is always a plane surface that is inclined relative to the
plane top side, the lower part can have different layouts. In many cases there is another
inclined plane surface which intersects the upper plane in a straight line parallel to the
other intersections of the top, back, and bottom planes. Often, the planar part of the
lower section of the front face is decorated with two lion paws on its left and right sides
or stylized feet-like elements on the same position as in a sundial from Delos (Fig. ǟ).

1 For example, in Neugebauer ǟǧǢǦ and Neugebauer
ǟǧǥǣ, Ǧǣǥ, Otto Neugebauer suggests that the early

theory of conic section originated from the theory
of sundials.
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Fig. ǟ View on the south and west (left), and on the top side (right) of a conical sundial from Delos. Archaeologi-
cal Museum Delos, Inv. BǡǤǣǠ (ǟǟǞǠǡ).

The stone block is intersected by a right cone that stands orthogonal on the upper part
of the front face. On its surface, eleven hour lines – and usually three lines that show
the daily motion of the sun for some days of the year – are marked. This grid of lines
makes it possible to determine the time that is indicated by the shadow of the tip of the
gnomon that is situated in the top surface. In order to show the right time, the upper
part of the front face and the planes of the day curves have to be parallel to the equatorial
plane.

Conical sundials make up the largest group (about 35%) among the preserved sun-
dials of the Greek type.2 The oldest sundials with a design as described above date to the
beginning of the Ǡnd century BCE. Some conical sundials with different corpus forms
are even slightly older.3 Conical sundials therefore belong to the earliest sundials that
have come down to us.

An evaluation of ǡD models of sundials shows that the conical surfaces deviate only
little from right cones and are indeed orthogonal to the inclined upper part of the front
face.4 Due to the relative positions of cone and block, the edge between the conical
surface and the planar top surface is a conic section. On the preserved objects we can
observe three different types of curves: ellipses, parabolas, and hyperbolas (Fig. Ǡ).

An analysis of a group of conical sundials from the island of Delos has shown that
there exists a single principle that can explain some key dimensions of those objects.

2 This value is based on information on the preserved
objects given in reports on sundials and catalogs
such as Gibbs ǟǧǥǤ and Schaldach ǠǞǞǤ.

3 For example, a sundial found at Herakleia with two
conical dialfaces at the south and the north facing
sides dates to the ǡrd century BCE (see Berlin Sun-

dial Collaboration ǠǞǟǢa and Berlin Sundial Collab-
oration ǠǞǟǢb).

4 These properties of the conical sundial type have been
suggested by earlier scholars such as Sharon L. Gibbs
(Gibbs ǟǧǥǤ) but have never been shown before. In
many cases the analysis of the geometry of sundials
is based on the assumption of these properties.
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Fig. Ǡ Type of conic sections at the intersection of the cone with the planar top surface. Depending on the incli-
nation of the front face towards the vertical direction (φ) and the angle at the top opening (ω), the conic section
is an ellipse, parabola or a hyperbola. The information used for the diagram is the result of a survey of literature
on ancient sundials such as Gibbs ǟǧǥǤ and Schaldach ǠǞǞǤ as well as reports on ancient sundials.

Starting with the geographical latitude of the place given by the ratio of the length of a
gnomon g0 to the length s0 of its equinoctial shadow the lengths of a set of edges can
be derived by easy calculations (Fig. ǡ):

number of modular units

r radius s0g g0s s0w width 2 · s0 + 1h height 2 · s0 + 1d depth s0 + 3l depth of cone opening s0 + 1

Besides one missing parameter and a decision about the design of the base part of the sun-
dial, the shape of the sundial including its cone is determined uniquely by this principle.

ǟǤǦ
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Fig. ǡ Dimensions of conical
sundials that are determined
by a constructional principle
found for a group of sundials
from Delos. w: width; h: height;d: depth; r: radius of the open-
ing circle; g and s: sides of the
orthogonal triangle given by the
inclined front side; l: distance of
the point of the conic section that
is most distant to the front edge
to this edge.

The principle leads – at least for the shaping of the corpus – to an easy to follow pro-
cedure that enables the stonecutter to build a sundial for a given geographical latitude
without knowledge of astronomy and geography, or a deep understanding of their ge-
ometry. Traces of the use of this procedure to determine the position of the upper in-
clined front side can be identified on several preserved sundials from Delos and else-
where.

ǡ Shaping the conical surface

By the principle derived from the Delian sundials, the shape of the cone is almost5 given.
We still have to identify the craftsman’s method for creating the conical surface on the
object. Since a large part of the circular base of the cone is given, in a first attempt one
might consider a method based on one possible definition of cones: The surface of a
cone is generated by the rotation of a straight line fixed at a point (the vertex of the
cone) around the circle at its base. Since the cone should be a right cone, the vertex lies

5 The missing parameter determines the position of
the center of the opening circle of the sundial. Due
to the geometrical properties and the condition to

meet the restrictions coming from the obliquity of
the ecliptic, the possible variation in its position is
very small.

ǟǤǧ



̜̙̣̤̘̑̒̕̕ ̢̢̙̞̞̕

Fig. Ǣ Deviations of the cone axes towards the pole direction for well preserved conical sundials, based on the
existing ǡD models. The distances to the center indicates the deviation in the inclination, the directions of the
arrows show their directions relative to the horizon and meridian line.

on the line orthogonal to its base circle standing on its middle point. The shaping of
the conical shadow receiving surface then can be controlled by the use of a ruler that
is fixed on the vertex of the cone. The position of the vertex can be constructed on the
basis of the dimensions given by the construction principle.

As a result of this method one would expect deviations in the fixed point of the
ruler from the vertex in any direction. This would lead to deviations of the angles of the
cone’s axes to the upper part of the corresponding front planes from a right angle in any
direction. But this is not in accordance with the material evidence: In most cases, the
direction of the cone axis lies within the meridian plane (Fig. Ǣ). So what we seek is a
method that can explain this very specific error.

ǟǥǞ
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Fig. ǣ Left: deviation of the shadow receiving surface towards an exact right cone in a conical sundial from
the Villa San Marco, Castellamare di Stabiae, Italy, based on its ǡD model (Berlin Sundial Collaboration ǠǞǟǣa).
Right: photo of the conical sundials from Villa San Marco, Castellammare di Stabiae, Italy.

A different approach is to use both the circular line on the upper part of the front side
and the line of the conic section that results from the intersection of the cone with the
top plane. Again, the removal of the material can be controlled by a ruler. The surface
is reached, if all material which lies between any two points of the two given lines is
removed. Due to the convexity of cones no part of those lines falls outside the cone. Since
the convex hull of the two curves contains the section of the cone’s surface we know that
the method leads to a removal of all redundant material. This method is more robust
regarding deviations of the cone’s axis to the west and east than to directions lying in
the meridian plane. By this, we can explain the characteristics of the errors as shown in
Fig. Ǣ.

Deviations of the resulting cone then can be caused by drawing incorrect conic
sections on the top surface, errors in the usage of the dimension of the distance of the
deepest point of the cone to the front edge l, erroneous inclinations of the upper part
of the front side towards the top surface, errors in the circle on the front side, or by
stopping the process before the conic surface is reached.

The effect of those errors can be observed in the preserved sundials. For example,
on a sundial from the Villa San Marco at Castellamare di Stabiae, the western part of the
conical surface does not coincide with the circular line that is engraved on the front side
(Fig. ǣ right). In this area, the surface of the object deviates from the exact conic surface
(Fig. ǣ left). Going to the top surface, this deviation becomes smaller.

This situation can be explained by the use of the method based on the conic section
on the top surface, if the process has been stopped before the conic surface has been
reached. Of course it could be generated by an erroneous usage of the first method. But
in this case the vertex had to be moving, the circle on the front side has not been met,

ǟǥǟ
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Fig. Ǥ View on the top plane (left) and the south eastern edge (right) of the sundial from Naga, based on its ǡD
model (TrigonArt, Bauer Praus GbR ǠǞǟǣ [ǠǞǟǡ]).

and the procedure stopped when – by chance – the correct conic section at the top plane
has been reached. This is not plausible.

In the case of the Naga sundial6 the curve at the top plane deviates from a conic
section (Fig. Ǥ left). Nevertheless the surface is generated by an (erroneous) sequence of
straight connections of points lying on both defining curves. In the relevant part of the
surface the direction of these lines is the same as in the markings that come from the
carving of the surface and are preserved at the western part of the surface (Fig. Ǥ right).
Again, we see the result of the second method, based on erroneous starting conditions.

Since the method based on the conic section can explain the very specific errors
observed on the material evidence, it has to be considered as the one that has been used
to build those sundials.

Ǣ Greek mathematics and the method of shaping the cone

The first Greek mathematical texts dealing with the geometry of cones – especially right
cones – significantly predate the first preserved sundials. About the time of the earli-
est preserved conical sundials Apollonius of Perga states two propositions at the very
beginning of his Conics:

Prop. 1: The straight lines drawn from the vertex of the conic surface to points
on the surface are on that surface.

6 Kroeper and Krzyzaniak ǟǧǧǦ.
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Prop. 2: If on either one of the two vertically opposite surfaces two points are
taken, and the straight line joining the points, when produced, does not pass
through the vertex, then it will fall within the surface, and produced it will fall
outside.7

As a consequence, all straight lines connecting the circle and the conic section as in
the situation of the second method will fall inside or on the conical surface. So, using
two very elementary propositions it can be proved that the method meets the demand.8

Moreover, this illustrates that at least within the context of Greek geometry of the time
people were aware of this central aspect of the reconstructed method. This shows that
this part of the method is historically adequate.

In the light of the theory of conic sections as presented by Apollonius, the curve at
the top plane of a conical sundial is a conic section. Depending on its properties one
would have to call it an ellipse, parabola or hyperbola.

But since the top plane is not orthogonal to any of the straight lines of the conical
surface, according to the reconstruction of the older theory of conic sections the curve
is not considered as a representative of one of the three types of conic sections – section
of an acute-angled cone, section of a right-angled cone, and section of an obtuse-angled
cone – that are analyzed and used in the geometry based on this theory. Nevertheless,
some statements suggest a broader use of those terms for all curves that can be generated
by an orthogonal intersection of a plane with a cone,9 but the terms themselves are still
used for example by Archimedes in his On Conoids and Spheroids shortly before the time
of Apollonius’ Conics.

Both the first conical sundials and the change in the concept fall into the same time.
So what we know is that some people were aware of those curves and their properties,
but the lines might not have been named as conic sections. Again, this shows that the
usage of those sections of planes and cones is in accordance with what we know about
the history of mathematics.

7 Translation from Taliaferro and Fried ǠǞǟǡ.
8 Since a large section of the base circle and its inter-

section with the part of a conic section at the end-
points of those lines is given, the generation of the
surface follows.

9 This interpretation has been suggested by Heath
ǟǧǠǟ, Ǣǡǧ. One example is found in the introduc-
tion of Euclid’s phaenomena (Berggren and Thomas
ǟǧǧǤ).
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Fig. ǥ Geometry of a situation in a conical sundial that can be used as a basis for the construction of 7 support-
ing points.

ǣ Methods of drawing the conic section on the top surface

Regardless, whether one calls the edge of the conical shadow receiving surface with the
top plane of the sundial a conic sections or not, in order to shape the surface in the
identified way one needs a method to find that curve.

Since in most but not all cases the conic section is an ellipse, the method has either to
be case sensitive on the type of conic section, or it has to provide the result independent
of the type. Due to the spatial limitations on the top surface of the sundial there might
be some additional restrictions to the method – unless the conic section is transferred
to the object from a separate diagram.

One possibility to do so is based on the following properties of the geometry of
a conical sundial (Fig. ǥ). In a sundial with a right cone that is orthogonal to the upper
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Fig. Ǧ Analemma-like diagram (left), construction on the top plane (middle), and connection of the supporting
points (right) of a method for drawing an arbitrary conic section on a conical sundial.

part of the front face, each plane parallel to the upper part of the front face intersects the
cone in a circle. Let two such circles be given. The first should contain the intersection
point P1 of the cone’s axis with the top plane,10 the second circle should be taken such
that the angles D0P1D1 and D1P1D2 are equal. Since in the first plane the middle pointP1 of the intersection circle lies on the top plane, the distances P1P ′

1 , P1P ′′
1 , and P1D1

are all equal to the radius r1 of this circle. In the given situation, the points P ′
0 , P1, andP ′′

2 , as well as P ′′
0 , P1, and P ′

2 , lie on a straight line. This is similar to the situation of
the rising and setting of the sun on the solstices and the equinoxes that is considered
in the analemma diagram. All geometrical properties can be shown by the use of very
basic knowledge of the geometry of right triangles and proportions.

For a sundial for which the inclination of the upper part of the front face, the po-
sition and radius of the opening circle, and the inclination of the meridian line on the
conical surface are given, one can construct a diagram similar to the analemma diagram
(Fig. Ǧ left). In this situation, the positions of P1 and D1 can be derived from the given
properties.D2 and P2 then can be constructed such that the angles D0P1D1 and D1P1D2

are equal. From this diagram one can measure the distances l0, l1, l2, and the radius r1.11

10 This point is usually suggested as the supposed po-
sition of the tip of the gnomon. Since in many ob-
jects significant deviations between this point and
the plane of the equinoctial day curve can be ob-
served, there might be another type with deviating
gnomon point positions.

11 ‘Meridian line’ relates to both the intersection of the
meridian plane with the conical surface (as in this
context) and the intersection of this plane with the
planar top surface.
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Using this information together with the geometrical properties stated above gives
the possibility to construct seven points of the conic section (Fig. Ǧ middle):

– Points P ′
0 and P ′′

0 are given by the intersection of the opening circle of the cone on
the upper part of the front face and the edge between the upper front and top plane

– Points P ′
1 and P ′′

1 lie on a line which is parallel to the front edge with the distance l0
as constructed in the diagram in Fig. Ǧ left. Since as in the ǡD diagram both points
and point D1 lie on the same circle with middle point P1 the distances of points P ′

1
and P ′′

1 to the meridian line on the top plane are equal to the radius r1 as constructed
in diagram in Fig. Ǧ left.

– Points P ′
2 and P ′′

2 lie on straight lines through point P ′′
0 (P ′

0 ) and point P1. Their
distance to the front edge is given in the left diagram (distance l0 + l1).

– Point P3 lies on the meridian line on the top plane with distance l as in the left
diagram.

This construction works independently of the type of conic section of the curve. By
this, one does not need to know the type of the curve for finding positions of some of
its points or even have a concept of conic sections.

In a last step, the intersection line of cone and plane can be found – at least in a close
approximation – by drawing a smooth curve connecting those points (Fig. Ǧ right).

A very late witness for drawing a conic section by connecting a number of given
points is C. Ptolemy in his Geography. At one point,12 he reminds the reader to care
about the correct shape of the ellipses in the depiction of the globe within a ringed
sphere/astrolabe.

In prop. 25 of the IVth book of his Conics, Apollonius shows that

A section of a cone does not cut a section of a cone or circumference of a circle
at more than four points.13

According to this, 5 given points suffice to determine the conic section uniquely – as long
as the interpolated curve is a conic section. So, the construction provides two additional
points. This makes it easier to find the right location of the curve.

The distribution of the given points is a source of errors in the shape of the curve.
Since there are only few points in the middle, there is not much guidance in this part.
This lack of guidance cannot prevent errors as for example in the Naga sundial: the shape
of the conic section is too cuspid in its middle (Fig. Ǥ left).

12 C. Ptolemy, Geography, Book ǥ, ch. Ǥ. 13 Translation from Taliaferro and Fried ǠǞǟǡ.
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Fig. ǧ Constructional lines (right) and their positions (left) on a sundial from Delos (Archaeological Museum,
Delos, Inv. BǢǤǤǧ) in the ǡD model of the object (Berlin Sundial Collaboration ǠǞǟǣb).

Again, for this method we have a similar situation as for the shaping of the conical sur-
face: on one hand, there is a procedure that uses easy geometric constructions to provide
everything that is needed to find the correct conic section. On the other hand, there is
mathematical knowledge that can prove that the procedure leads to a good result – and
that this was known.

There is at least one ancient sundial that shows a very specific set of constructional
lines on the top plane that can be part of the construction of those points. Unfortunately,
only a fragment of the western part of the upper half of the sundial is preserved. The
dimensions of this sundial can be reconstructed according to the principle of the Delos
sundials.

All constructional lines are parallel to the intersection of the top and front planes
(Fig. ǧ). One goes through the point most distant to the front edge. The two others are
close to the markings of the equinoctial and winter solstitial plane (Fig. ǟǞ). The lines are
intersected by two other lines that are both orthogonal to the former lines. Two of the
intersection points lie very exactly on the now damaged conic section. The line through
the intersection point next to the winter solstitial plane and the intersection of the first
line with the meridian line on the top plane meets the eastern intersection point of the
cone with the front edge and can be seen as constructional line in the back part of the
top plane (Fig. ǧ left).

A similar situation can be observed on other sundials. What is special in this case
is that the foremost constructional line does not coincide exactly with the intersection
line of the equatorial plane with the top plane. Otherwise, the lines could also be used
to find the location of those planes.

ǟǥǥ



̜̙̣̤̘̑̒̕̕ ̢̢̙̞̞̕

Fig. ǟǞ Constructional lines and their positions relative to the equinoctial and solstitial plane on a sundial from
Delos (Archaeological Museum, Delos, Inv. BǢǤǤǧ) in the ǡD model of the object (Berlin Sundial Collaboration
ǠǞǟǣb).

Ǥ Conical sundials and the theory of conic sections

All in all, the conic section that occurs at the intersection of the planar top surface and
the conical shadow receiving surface of a conical sundial is not only the result of the
geometric configuration of conical sundials. It is crucial in the process of their making.
By this, in addition to their contribution to the functionality in other types of sundials,
conic sections are of great importance for the design.

The usage of conical shadow receiving surfaces can be traced back into the time
of Apollonius of Perga and to a change in the theoretical concepts on conic sections.
Whereas the curves that occur in the conical sundials tend to belong to the Apollonian
‘universum’ of conic sections, the mathematics used in the method for shaping the cone
are not specific for this author. The generation of both the conic section and the conic
surface can be justified with geometrical properties of cones. Even the number of points
that are needed to determine the conic section uniquely or at least this question – ac-
cording to a common interpretation of Apollonius’ own words14 – goes back to Conon.

14 See also Fried’s introduction to Apollonius, Conics,
Book IV, in: Taliaferro and Fried ǠǞǟǡ, ǠǤǧ.

ǟǥǦ
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An influence of the methods of constructing conical sundials to the development of the
theory of conic sections has not be found.

Mathematics are not only the means by which the correctness of the outcome of a
method for building a sundial can be justified. Advanced geometry is also part of the
procedure to cut the stone:

construction of the supporting points of the conic section: needs a geometrical construction si-
milar to the analemma diagram that has to be transferred onto the stone;

drawing of the conic section: requires knowledge of the shapes of conic sections;
shaping of the conical surface: requires knowledge of the shapes of cones.

This suggests that elementary knowledge on cones and conic sections was part of the
background of craftsmen who built sundials in ancient Greece.

ǟǥǧ
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The Roofed Spherical Sundial and the Greek
Geometry of Curves

Summary

Greco-Roman sundials existed in a great variety of forms, but in most of the common types
the curves traced through the day by the Sun’s projection at the various stages of the year
were circles, straight lines, or conic sections, that is, the kinds of line most commonly inves-
tigated in Greek geometry. The variety known as roofed spherical sundials has day curves
of a more complicated character; nevertheless, the mathematicians of the time could have
investigated their properties by means of trigonometrical and projective resources attested
in texts such as Ptolemy’s Almagest and Pappus’s Collection.

Keywords: Sundials; geometry; Cetius Faventinus; Vitruvius; Pappus of Alexandria.

Griechisch-römische Sonnenuhren existierten in großer Formenvielfalt, aber bei den gän-
gigsten Typen sind die Kurven, denen die Sonnenprojektion über den Tag und in den ver-
schiedenen Jahresabschnitten folgt, Kreise, gerade Linien oder Kegelschnitte – also die Art
von Linien, die am häufigsten in der griechischen Geometrie untersucht wurden. Bei Son-
nenuhren mit Lochgnomon und halbkugelförmiger Schattenfläche (roofed spherical sundials)
treten jedoch kompliziertere Kurven als Tageslinien auf. Nichtsdestotrotz hätten die dama-
ligen Mathematiker deren Eigenschaften mit trigonometrischen und projektiven Mitteln
untersuchen können, die in Texten wie dem Almagest von Ptolemaios und den Mathemati-
schen Sammlungen von Pappos belegt sind.

Keywords: Sonnenuhren; Geometrie; Cetius Faventinus; Vitruvius; Pappos von Alexandria.
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̨̢̜̞̑̑̔̕̕ ̟̞̣̚̕

Greco-Roman sundials were products of astronomy, mathematics, and craft. The un-
derlying astronomical theory is that, from a terrestrial perspective, the Sun’s movement
during the course of a day and night can be idealized, with negligible inaccuracy, as
uniform motion along a declination circle of the celestial sphere, i.e. a circle parallel to
the celestial equator that is partly above and partly below the observer’s horizon. The
‘seasonal hours’ of the day, which were the seasonally varying time units used in daily
life, were defined astronomically as the intervals during which the Sun traverses equal
twelfths of the arc of the declination circle above the horizon. The sundial displays the
linear projection of the Sun’s instantaneous position on the celestial sphere, through
a fixed vertex point, upon an immobile surface.1 This surface is inscribed with a grid
formed by two sets of lines: projections of a subset of the declination circles correspond-
ing to key stages of the solar year, called ‘day curves’, and loci of the projections of the
points on all the declination circles corresponding to the endpoints of the seasonal hour
arcs, called ‘hour curves’. Hence the position of the Sun’s projection relative to the grid
lines shows not only the current seasonal hour of the day but also the current stage of
the year.

The surfaces chosen for sundials were those of simple geometrical forms: planes,
spheres, cones, and cylinders; and normally the vertex was the tip of a gnomon so that
the projection of the Sun’s position was displayed as the tip of the gnomon’s shadow.
The quintessential Greco-Roman sundial type from a cosmological point of view had
a concave spherical surface and a gnomon whose tip was at the center of the sphere, so
that the surface is an inverted but geometrically undistorted image of part of the celes-
tial sphere, and the day curves are parallel circular arcs (Fig. ǟ). Another common type
that preserved the day curves as parallel circular arcs had a concave right conical sur-
face whose axis was polar, that is, perpendicular to the plane of the equator, and whose
gnomon tip was on the axis. A comparatively rare limiting case of this type flattened the
cone into a planar surface parallel to the equator; such equatorial sundials had to consist
of a slab with two inscribed faces and two gnomons since the Sun shines on each face
of the slab for only half the year.2 In another, likewise rare, limiting case, the conical

1 In this paper I am not concerned with portable sun-
dials, which for the most part worked on different
principles from fixed-position sundials.

2 Six examples are currently known (Herrmann, Sipsi,
and Schaldach ǠǞǟǣ). Notable among them are the
fragments of an exceptionally early – second half of
the fourth century BC? – equatorial sundial exca-
vated at Oropos (Archaeological Museum of Oro-

pos, East Attika, inv. A ǡǧǠ, formerly Piraeus, Arche-
ological Museum inv. Ǡǡǣ, see Schaldach ǠǞǞǢ and
Schaldach ǠǞǞǤ, ǟǟǤ–ǟǠǟ) and a well preserved one
of unknown provenance and date (British Museum
ǟǦǦǢ,ǞǤǟǣ.ǟ=Gibbs ǣǞǠǠG, intended latitude esti-
mated by Gibbs as 32◦ and by me as 33◦, incorrectly
identified by Winter ǠǞǟǡ, ǣǧǥ as a vertical sundial).

ǟǦǢ



̤̘̕ ̢̟̟̖̔̕ ̢̣̠̘̙̜̓̑̕ ̣̥̞̙̜̔̑

Fig. ǟ Spherical sundial, Vatican, Musei Vaticani inv. ǠǢǡǧ=Gibbs ǟǞǤǦG, found before ǟǦǠǞ on the Esquiline,
Rome, likely first century AD and certainly after Ǧ BC; drawing from Guattani ǟǦǟǟ, ǟǞǠ. Gibbs (ǟǧǥǤ, ǟǦǢ) es-
timates the latitude for which the sundial was made as 42◦, appropriate for Rome (actual latitude 41◦ 54′). The
sundial bowl would have faced south, and the marble block out of which it was sculpted would have been rectan-
gular except for the south face, which would probably have sloped forward from bottom to top so that the upper
rim of the bowl could accommodate the projections of the entire arcs of the eastern and western horizons over
which sunrises and sunsets take place through the year. The lost gnomon would have been mounted vertically
from the middle of the bottom front edge, roughly where the present broken edge shows a notch. The grid is ex-
ceptionally elaborate and carefully executed, with labeling inscriptions in Greek. The arcs running from left to
right are the day curves correspond to the dates of the Sun’s entry into the zodiacal signs, including the winter sol-
stice (top), equinoxes (middle), and summer solstice (bottom). Eleven hour curves separating the twelve hours of
day cross the day curves. The circle is an image of the ecliptic divided into twelve equal sectors, used to locate the
day curves for the zodiacal sign entries between the solstices and equinoxes, while the two oblique lines indicate
the lengthening of days through the course of the year relative to the winter equinox.

surface was stretched out into a concave cylindrical surface with a polar axis.3 All the
foregoing types can be grouped in a general category of polar-axial sundials.

Since the surface generated by the straight lines passing through a fixed vertex and
through all points of a declination circle is a right cone, a Greek geometer would imme-
diately have recognized that the projections of declination circles on planar surfaces are

3 A remarkable example of this type, consisting of a
cylindrical hole perforating a slab in the plane of
the equator, was excavated at Aï Khanoum (No. Ǡ
in Veuve ǟǧǦǠ; see also Savoie ǠǞǞǥ); it was con-
structed for latitude 37◦, which is approximately
correct for Aï Khanoum, except that the hour curves
would best fit a latitude of about 25◦. The other

two polar cylindrical sundials known to me, resem-
bling conventional spherical or conical sundials,
are Gibbs ǤǞǞǠG (found at Cumpăna, Rumania,
Constanta Archeological Museum inv. ǟǤǣǥ) and
Gibbs ǟǞǣǡG (uncertain provenance and date, in
archeological storage at Thessaloniki, classified by
Gibbs as spherical but see Schaldach ǠǞǞǤ, ǟǢǞ).

ǟǦǣ



̨̢̜̞̑̑̔̕̕ ̟̞̣̚̕

Fig. Ǡ Horizontal sundial, Naples, Museo Archeologico Nazionale inv. ǡǞǥǣ=Gibbs ǢǞǞǥ, found in ǟǦǤǣ
at Pompeii, probably first century AD and certainly not later than AD ǥǧ; drawing from Museo archeologico
nazionale di Napoli ǟǦǤǥ, ǟǤ. Only the hole for the vertical gnomon survives; the slab would have been oriented
with the top edge (as shown) facing south. The hyperbolic day curves correspond to the dates of the Sun’s entry
in the zodiacal signs, including the summer solstice (top), equinoxes (straight line at middle), and winter solstice
(bottom). labeled with abbreviated names in Greek. The hour curves have been drawn pointwise, and exhibit un-
explained sinuosities; in most horizontal sundials the hour curves are drawn as straight lines. Basing the estimate
on measurements along the meridian hour curve from the photograph, the sundial was constructed for approxi-
mate latitude 41◦, appropriate for Pompeii (actual latitude 40◦ 45′).

conic sections.4 Aside from the equatorial type that we have just described, the surfaces
of ancient planar sundials were either parallel to the horizon or perpendicular to it and
facing any horizontal direction.5 Assuming a terrestrial location between the Tropic
of Cancer and the Arctic Circle, the day curves of a horizontal or vertical sundial will
always be hyperbolas except for the equinoctial curve, which must be a straight line since
the tip of the gnomon lies in the plane of the celestial equator.6 Although no ancient
discussion of the day curves of planar sundials as conic sections survives, there is no
doubt that their properties were well within the grasp of Hellenistic geometers; and in

4 Neugebauer (ǟǧǢǦ) went so far as to suggest that the
Greek study of conic sections originated in sundial
theory, though he conceded that this hypothesis was
difficult to reconcile with the specific orientations of
cone and plane by which the curves were generated
in the period before Apollonius’s Conics.

5 In practice one finds vertical dials built to face the
four cardinal directions as well as the four direc-

tions at 45◦ from them; the octagonal Tower of the
Winds at Athens has sundials facing all eight direc-
tions.

6 The conventional axiom of Greek cosmology that
‘the Earth has the ratio of a point to the cosmos’
implies that the tip of a gnomon is, for all observa-
tional purposes, at the center of the celestial sphere.

ǟǦǤ
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Fig. ǡ Vertical sundial on the south face of the Tower of the Winds=Gibbs ǣǞǞǟ, Athens, c. 100 BC; drawing
from Stuart and Revett ǟǦǠǣ, pl. xix. The hyperbolic day curves correspond to the winter solstice (top), equinoxes
(horizontal straight line at middle), and summer solstice (at bottom); they are executed with astonishing accuracy,
and were probably based on measurements made on the walls of the Tower after it had been erected (Schaldach
ǠǞǞǤ, ǤǦ–Ǧǟ and ǟǤǧ–ǟǦǟ). The hour curves are inscribed as straight lines. The gnomons on the present-day monu-
ment are inaccurate modern restorations.

fact some of the day curves on the best executed planar sundials have the appearance of
being the products of theoretical construction calibrated by empirical data (examples
Figs. Ǡ–ǡ).

The hour curves, by contrast, would have been beyond the resources of Greek mathe-
matics to handle except in an approximative pointwise manner. If the time units em-
ployed had been equinoctial hours (equal twenty-fourths of a day and night, counted
from noon or midnight), the hour curves in any polar-axial sundial would have divided
all the day curves in similar arcs of 15◦, and hence they would have been easy geomet-
rical objects to handle: great circle arcs on spherical sundials, and straight lines on the
other types, all lying in planes passing through the polar axis. These same planes that
correspond to the equinoctial hours would project on a planar sundial as straight lines,
albeit no longer equally spaced. Use of seasonal hours, however, results, for all the sun-
dial types, in hour curves that have rather messy analytical representations that do not
lend themselves to geometrical construction in the Greek manner.

ǟǦǥ
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Of course any shape of surface could be used for a sundial if one does not require
the day curves to be circles, straight lines, or conic sections. In practice the designers
of Greco-Roman sundials exercised this freedom only in limited ways. One recurring,
though not very common, type employed a concave or convex cylindrical surface with
a vertical axis.7 In such sundials, the day curve for the equinoxes is an arc of an ellipse, but
the other day curves would not have been tractable by ancient mathematical methods.

The type of Greco-Roman sundial usually designated in English as ‘roofed spher-
ical sundial’ (the French name cadran à œilleton is better) stands out as by far the most
popular of the designs whose day curves are not straight lines, circles, or conic sections.
According to the latest published information, about thirty-two examples of this type
are known, either as existing at present or having existed since the ǟǤth century.8 This
amounts to something between one-fifteenth and one-twentieth of the currently known
Greco-Roman sundials, a fraction comparable to that accounted for by horizontal sun-
dials.9 The great majority are from Italy and fully a third from Aquileia, which thus
appears to have been a center of their production in the imperial period.10 The earliest,
however, appears to be the south face of an elaborate late Hellenistic multiple sundial
excavated in ǟǧǞǣ in the sanctuary of Posidon and Amphitrite on Tinos, which bears
inscriptions associating it with Andronikos Kyrrhestes (c. 100 BC?), the architect of the
Tower of the Winds in Athens.11

Vitruvius writes tersely of a type of sundial named “hemispherical” (hemicyclium),12

“hollowed out of a rectangular block and undercut in accordance with the latitude”.13

7 Several examples of concave vertical cylindrical sun-
dial surfaces are elements of rather baroque Roman-
period multiple sundials (Gibbs ǥǞǞǢ–ǥǞǞǥ), prob-
ably all from Italy. An apparently self-standing one
is Gibbs ǤǞǞǟ, from Volubilis. The cistern-annex on
the south side of the Tower of the Winds bears a
convex vertical cylindrical sundial, a type otherwise
known only from miniature portable sundials.

8 Gibbs (ǟǧǥǤ, ǟǧǣ–ǠǟǦ) lists twenty-three while
Winter (ǠǞǟǡ, ǣǧ) lists twenty-eight, among which
‘Durostorum ǟ’ (Silistra, Archeological Museum
inv. ǣǟǥ) and ‘Serdica’ (Sofia) are misidentified,
whereas one should add Winter’s ‘Leptis Magna ǡ’
(a photo of which appears on the book’s cover), ‘Sa-
lona’ (Split, Archeological Museum, incorrectly clas-
sified by Winter ǠǞǟǡ, ǣǡǧ as a conventional spheri-
cal sundial, but see Gibbs ǟǧǥǤ, ǠǟǞ, No. ǠǞǟǤG), as
well as the following four sundials that are entirely
missing from Winter’s book: Gibbs ǠǞǟǢG (Trieste,
Civic Museum of History and Art), ǠǞǠǟ (Vatican
Museum inv. ǣǡǦǥǣ= PN ǣ), ǠǞǠǡG (Berlin, Anti-
kensammlung SKǟǞǢǧ), and a sundial from Villa B

at Oplontis published (without inventory number)
in Catamo et al. ǠǞǞǞ, Ǡǟǥ–ǠǟǦ. Bonnin (ǠǞǟǠ, ǠǠ)
speaks of thirty-three known roofed spherical sun-
dials without providing a list. Hannah and Magli
(ǠǞǟǟ) have proposed that the Pantheon was a kind
of monumental roofed spherical sundial.

9 Gibbs inventories ǠǥǤ sundials, Winter roughly
ǢǞǞ, while the forthcoming catalog by Jérôme Bon-
nin will list at least ǣǤǡ (http://bsa.biblio.univ-
lille3.fr/blog/2012/09/horologia-romana, visited on
ǟǥ/ǥ/ǠǞǟǥ).

10 Schaldach ǟǧǧǥ, ǡǣ–ǡǤ; Winter ǠǞǟǡ, ǤǞ.
11 Tinos, Archeological Museum inv. A ǟǡǧ=Gibbs

ǥǞǞǟG. Whether the Tinos sundial was constructed
by Andronikos or merely honors his memory is
disputable. On the vexed problem of dating An-
dronikos and the Tower of the Winds see Schaldach
ǠǞǞǤ, Ǥǟ–Ǥǡ.

12 The Greek word ἡ̵̲̳ύ̴̸̶̳̲ can mean a hemisphere
as well as (more commonly) a semicircle.

13 Vitruvius, De Architectura Book ǧ, Ǧ, translated from
Rose ǟǦǧǧ, Ǡǡǡ.

ǟǦǦ
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A fuller description provided by the third-century architectural writer Cetius Faventinus
removes any doubt that this type is our roofed spherical sundial:14

Let the clock [horologium] that is called hemicyclion be formed in a similar man-
ner from a stone or a marble block having its four sides broader at the top and
narrower at the bottom, so that it has its sides wider behind and on the sides,
but let the front lean forward somewhat and make a greater shadow. On the un-
derside of this front let a circumference [rotunditas] be drawn with a compass,
and let this be hollowed out inwards and make the shape of a hemisphere. In
this cavity let there be three circles [circuli], one close to the top of the clock, the
second through the middle of the cavity, and let the third be marked close to
the edge. Next from the smaller circle to the greater seasonal[?] circle15 [circu-
lum horalem] let eleven straight [!] lines be drawn at equal spacing, which are to
indicate the hours. Through the middle of the hemisphere, above the smaller
circle, let there be a smooth plate of more delicate thickness, so that with a
circular finger-size hole having been opened up [aperta rotunditate digitali] the
ray of the sun, passing within more easily, may indicate the hours through the
numbers of the lines. Then at the season of winter it will provide the numbers
of the hours through the smaller circle, and in the season of summer it will step
through the intervals of the greater circle.16

As Cetius writes, the operating surface of a roofed spherical sundial (examples Figs.
Ǣ, ǣ, Ǥ, and ǥ) is a concave hemisphere that is oriented facing southwards and slightly
downwards so that the body of the sundial overhangs the surface, hence the modern
designation ‘roofed’.17 At the highest point of the hemisphere is an orifice covered by

14 Cetius Faventinus ǡǟǞ.ǟǡ–ǡǟǟ.Ǡ, translated from
Rose ǟǦǧǧ, ǡǞǠ–ǡǞǡ.

15 It is not clear what Cetius intends by horalis, a very
rare word that one would expect to mean ‘pertain-
ing to hours’. The “circle” in question is a day-curve,
not an hour-curve.

16 Following the passage translated here, Cetius speaks
of two vertical sundial faces oriented eastwards
and westwards, but (contrary to the interpretation
in Schaldach ǟǧǧǥ, ǡǥ–ǡǦ) this must refer to the
other type of sundial that he earlier described, the
pelicinum, which comprised a pair of vertical sun-
dials facing southeast and southwest and joined at
the meridian hour line; the sentences in question
are likely displaced. For the correct identification of
the pelicinum see Traversari ǟǧǦǧ and Bonnin ǠǞǟǣ,
ǡǞ–ǡǠ; incorrect identifications abound. Bonnin
(ǠǞǟǣ, Ǡǧ–ǡǞ) doubts whether Cetius is correct in

applying the name hemicyclium to the roofed verti-
cal type, and demonstrates the existence of a rare
roofed conical type, which will not be discussed in
the present article.

17 Discussing the Berlin sundial, Staatliche Museen
zu Berlin, Antikensammlung inv. SKǟǞǢǧ=Gibbs
ǠǞǠǡG, Woepcke (ǟǦǢǦ [ǟǦǢǠ], ǡǦ–ǡǧ) proposed that
the sundial would have been mounted lying on the
face that we would call its back, and with the face
that we would call its top facing south, with dis-
astrous results for his analysis of it. The lion’s feet
should have made the correct orientation obvious.
The mistake, and Woepcke’s consequent identifi-
cation of the type with Vitruvius’s antiboreum (De
Architectura Book ǧ, Ǧ), persist even in fairly recent
works on ancient sundials, e.g. Rohr ǟǧǥǞ, ǟǢ; this
despite the fact that other publications starting with
Kenner ǟǦǦǞ had shown roofed spherical sundials

ǟǦǧ
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Fig. Ǣ Roofed spherical sundial, Museo Arqueológico Nacional, Madrid, inv. ǡǡǟǦǣ=Gibbs ǠǞǠǞ, excavated
at Baelo Claudia, 1st century AD. This is the general design that Cetius Faventinus knew, a rectangular block
with a forwards-sloping south face, and most of the extant roofed sundials follow it. The hemispherical sundial
surface is approximately tangent to the top face of the block. The original eyehole would have been a perforation
in a metal plate mounted covering the large hole at the top; the plate now occupying this position is a modern
restoration. The loop-shaped curves are the day curves for the winter solstice (smallest), equinoxes, and summer
solstice (largest, close to the rim of the bowl). Measurement of the inclination of the equinoctial day curve from
the digital model shows that the sundial was constructed for a latitude of approximately 48◦ 30′, whereas the
latitude of Baelo Claudia is near 36◦.

a plate perforated in an eyelet, through which sunlight penetrates from above. A small
spot of light thus falls on the surface at the point that is the projection of the Sun’s
position on the celestial sphere through the eyelet, which thus functions as a gnomon
in reverse.18

Situating the vertex of projection on the spherical surface instead of at its center
results in a complete change in the geometry of the Sun’s projected paths compared to
a conventional spherical sundial. At both sunrise and sunset the Sun’s projection coin-
cides with the eyelet (treating the eyelet as a geometrical point), so that each day curve is
a closed loop. Since the eyelet lies in the plane of the celestial equator and the intersec-
tion of any plane with a sphere is a circle, the equinoctial day curve is a complete circle;
but, notwithstanding what Cetius writes, this is not true of the day curves for the sol-
stices or for any of the other day curves; in fact, unlike the days curves of polar and planar
sundials, those of the roofed spherical sundial do not even lie in a single plane. For the
in their proper orientation, the correctness of which
was decisively established by the mathematical anal-
ysis in Drecker ǟǧǠǣ, Ǡǣ–ǡǢ. See Schaldach ǠǞǟǤ for
further references.

18 If the eyelet is circular and the edge around it is
thin, the projected spot of light will be circular no
matter where it falls on the spherical shell. In prin-
ciple this is a better way of marking the Sun’s posi-
tion than a gnomon shadow because the center of
the spot can be easily judged by eye.

ǟǧǞ
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Fig. ǣ View from the west side of a three-dimensional digital model of the bowl and front and top faces of the
Baelo Claudia roofed sundial, with other faces cut away. A recessed area of the top face accommodates a metal
plate perforated with the eyehole.

Fig. Ǥ Roofed spherical sundial, Louvre inv. MEǟǟǥǦ, acquired ǟǧǧǧ, reportedly found at a Roman Villa in
Carthage, likely first century AD and certainly after Ǧ BC. The day curves correspond to the entries of the Sun
into the zodiacal signs, and are labeled in Greek. The hour curves are executed with greater theoretical accuracy
than those of the Berlin sundial. A plate perforated with the eyehole would have been mounted over the present
hole at the top. Savoie and Lehoucq (ǠǞǞǟ) determined the latitude for which the sundial was constructed to be
approximately 41◦, much too far north for Carthage (latitude 36◦ 51′), more nearly appropriate for Rome.
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Fig. ǥ View from the west side
of a digital model of the bowl of
the Louvre sundial. (Model recon-
structed by photogrammetry.)

Fig. Ǧ Double-napped cone cor-
responding to solar declinations
±δ intersecting sundial bowl, with
its vertex at the eyehole point.
The figure is oriented so that hor-
izontal lines are parallel to the
equator.

general case of a declination circle for declination δ, the day curve is part of the intersec-
tion of the spherical surface with a double-napped right cone of aperture (180◦ − 2δ)
whose vertex lies on the surface of the sphere and whose axis is perpendicular to the
plane of the equator (Fig. Ǧ). The portion of this intersection lying on the northern nap
is the day curve for declination +δ, and the portion on the southern nap is the curve
for −δ (Fig. ǧ). Since Greek geometry only dealt with single-napped cones, an ancient
geometer would have regarded the day curve as a complete line of intersection of a cone
and a sphere, though for purposes of mathematical analysis it would have been useful
to work with the curves for equal positive and negative declinations simultaneously.

ǟǧǠ
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Fig. ǧ Curves of intersection of
the cone of Fig. Ǧ with the sundial
bowl, viewed from directly in
front of the bowl. The outline
of the paler gray region is the
day curve for +δ, and that of the
darker region is the day curve
for −δ.

According to Pappus, Greek mathematicians recognized three classes of lines as tractable
mathematical objects: straight lines and circles, which could by hypothesis be invoked
in a given plane without having to justify their generation; conic sections, which could
be generated by the intersection of the plane with simple three-dimensional surfaces
(cones and cylinders); and miscellaneous other curves, which could be generated either
by imagined ‘mechanical’ contrivances or by geometrical constructions involving the
intersections of three-dimensional surfaces.19 He delineates a hierarchy of geometrical
problems, according to which a problem that can be solved using just straight lines
and circles is called ‘planar’ (ἐ̹ί̸̶̹̮̭) and should only be solved using these ‘planar’
objects, while a problem that is not planar but that can be solved by introducing one
or more conic sections is ‘solid’ (̼̮̺̮̽ό̶), and one that can be solved using another
variety of curved line is ‘curvilinear’ (̬̺α̵̵̲̳ό̶). Pappus attributes to the geometers
a strict view that it was “no small fault” when a problem was solved by curves that are
not proper to its classification, which would mean that special curves should only be
invoked when a problem cannot be solved using just straight lines, circles, and conics,
in practice special curves were sometimes applied to ‘solid’ problems, perhaps because
it was easier to devise an apparatus for drawing them.

An ancient mathematician would easily have seen that the day curves of any sun-
dial are the intersections of cones defined as above with the sundial surfaces. What is
less obvious is whether a mathematician would have been capable of discovering and

19 Pappus, Collection Book Ǣ, cited after Hultsch ǟǦǥǤ–

ǟǦǥǦ, Vol. ǟ, ǠǥǞ–ǠǥǠ.
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Fig. ǟǞ Conditions determining the coordinates x, y (i.e. GQ, QJ as defined in the text) of a point J lying on the
day curve for declination +δ (adapted from Drecker ǟǧǠǣ, Plate Ǣ, Fig. Ǣǡ). Solid lines are in the meridian plane
through the center O of the sphere of the sundial bowl, broken lines in an arbitrary plane of section parallel to the
equator and passing through RS. The diagram is oriented so that lines parallel to the equator are horizontal. C is
the eyehole point; the semicircle on diameter MN is the section of the declination cone cut by the arbitrary plane,
and the semicircle on diameter RS is the section of the sphere cut by the plane.

demonstrating properties of the day curves in a roofed spherical sundial. Curves in three
dimensions were certainly objects of study; examples include the helix, the hippopede
of Eudoxus, and the intersection of a torus and a cylinder employed by Archytas in his
construction of the two mean proportionals. Pappus, Collection 4 contains a discussion
of a technique of generating surfaces (‘cylindroids’) as the loci of straight lines perpen-
dicular to a given plane and passing through points of a given curve;20 by taking the
intersection of such a cylindroid with a planar or curved surface, one could obtain new
and possibly more mathematically tractable curves as a form of projection of the origi-
nal curves. The fact that certain ‘mechanically’ generated curves such as the quadratrix
could also be related to intersections of surfaces was a matter of interest.

Expressed in suitable orthogonal coordinates x, y, and z, the intersection of a sphere
with a cone would be the solution of a pair of quadratic equations. Drecker demon-

20 Hultsch ǟǦǥǤ–ǟǦǥǦ, Vol. ǟ, ǠǣǦ–ǠǤǢ.
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strated that if we set the origin at the eyehole point, the x-axis oriented south-north in
the plane of the equator, and the y-axis oriented east-west in the plane of the equator,
then (Fig. ǟǞ):21

(x2 + y2 − 2r cos(φ) cos2(δ) x)2
= r 2 sin2(φ) sin2(2δ) (x2 + y2) (ǟ)

where r is the diameter of the sphere and φ is the terrestrial latitude for which the sundial
is constructed. Disregarding z, this quartic equation describes the day curve projected
orthogonally into the plane of the equator (Fig. ǟǟ).22 As Drecker remarks, it is the equa-
tion of a limaçon of (Étienne) Pascal. A characteristic property of the limaçon becomes
apparent if we express the equation in polar form:

ρ = 2r cos(φ) cos2(δ) cos(θ)± r sin(φ) sin(2δ) (Ǡ)

Since

ρ = 2r cos(φ) cos2(δ) cos(θ) (ǡ)

is the equation of a circle passing through the origin, the limaçon is the locus of points
at a constant distance from the circle as measured along any straight line through the
origin. Hence the limaçon is also known as the conchoid of a circle, an analogue of the
conchoid of Nicomedes which is the locus of points at a constant distance from a straight
line as measured along any straight line that passes through an origin not lying on the
given straight line.

The conchoid of Nicomedes was a ‘mechanical’ curve (in principle drawable by
means of a special compass) introduced in the Hellenistic period as a way of allowing
certain so-called neusis constructions, which are constructions that can be reduced to
the postulates of Elements Book 1 only in special conditions. A neusis is the construction
of a straight line passing through a given polar point, such that the part of the line
cut off between two intersections with given straight lines or circular arcs has a given
length. When at least one of the given lines is a straight line, the neusis can be performed
by drawing the conchoid of Nicomedes generated from the given polar point and the
given straight line, and then finding the intersections of the conchoid with the other
given line. Certain geometrical problems (for example in Archimedes On Spirals) could
be reduced to neuses in which one of the bounding lines was a circle and the polar point

21 Drecker ǟǧǠǣ, ǠǤ–Ǡǥ.
22 Drecker also shows that the orthogonal projection

of the day curves for ±δ in the meridian plane is a

parabola. I doubt that this would have been realized
in antiquity; the body of the sundial obstructs this
perspective from view.
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Fig. ǟǟ Orthogonal projection into an equatorial plane of day curves for φ= 41◦, declinations corresponding
to the Sun’s entry into the zodiacal signs. Thicker curves are for the winter solstice (innermost), equinoxes, and
summer solstice (outermost). Cf. Fig. Ǥ right.

lies on the same circle, and there is good reason to believe that the limaçon of Pascal
was known in antiquity as a resource for resolving such neuses.23

The fact that the day curves of a roofed spherical sundial are projections of limaçons
on the spherical surface is mathematically appealing, and a geometer familiar with the
planar curves might have suspected it simply from the look of the day curves on an em-
pirically constructed roofed spherical sundial. But could the geometer have proved it?
Drecker’s analytical approach to the problem does not translate well into a synthetic
form that one could imagine being discovered in antiquity. However, a deduction of the

23 Knorr ǟǧǦǤ, ǠǠǠ and ǠǣǦ.
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Fig. ǟǠ Meridian section of
sundial sphere.

limaçon would have been within reach of someone equipped with the basic theorems
underlying the planar trigonometry of Book 1 of Ptolemy’s Almagest. In the following
conjectural reconstruction I employ for the sake of clarity modern trigonometric func-
tions instead of Ptolemy’s chord function.

Fig. ǟǠ shows the cross-section in the plane of the meridian of the complete sphere to
which the sundial’s bowl belongs, oriented so that the intersection of the meridian and
equatorial planes is horizontal in the diagram. C is the eyehole point, E is the projection
of the Sun at noon on an equinox, and W and S are respectively the projections of the
Sun at noon on dates when the Sun’s declination is −δ and +δ. CD, the diameter of
the sundial sphere passing through C, is perpendicular to the horizon of the locality for
which the sundial has been constructed. Hence

CE = 2r cos(φ) (Ǣ)

CW = 2r cos(φ + δ) = 2r [cos(φ) cos(δ)− sin(φ) sin(δ)] (ǣ)

CS = 2r cos(φ − δ) = 2r [cos(φ) cos(δ) + sin(φ) sin(δ)] (Ǥ)

ǟǧǥ
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Let W ′ and S′ be the orthogonal projections of W and S in the plane parallel to the
equator that contains C and E, and let F ′ be their midpoint. Then

CF ′ = cos2(δ)CE (ǥ)

which, we note, does not depend on φ. Moreover,

F ′W ′ = F ′S′ = 2r sin(δ) cos(δ) sin(φ) (Ǧ)

We now consider (Fig. ǟǡ) a different cross-section of the sphere in an arbitrary plane
containing C and perpendicular to the equator. Points E′′, W ′′, and S′′ are projections
of the Sun at certain times of day (not necessarily the same times) on an equinox and
on dates when the Sun’s declination is respectively −δ and +δ as before. Let D′′C be
the diameter of the circle of the cross-section, and let φ′′ be angle D′′EC ′′. By the same
argument used to find CF, we have

CF ′′′ = cos2(δ)CE′′ (ǧ)

Hence CF ′′′/CE′′ is constant and equal to CF ′/CE, so that F ′′′ lies on the circle with diam-
eter CF ′ in the equatorial plane through C. Again,

F ′′′ W ′′′ = F ′′′ S′′′ = 2r ′′ sin(δ) cos(δ) sin(φ′′) (ǟǞ)

But

sin(φ′′) =
E′′D′′

2r ′′ =
ED
2r ′′ =

( rr ′′
) sin(φ) (ǟǟ)

So

F ′′′ W ′′′ = F ′′′ S′′′ = 2r sin(δ) cos(δ) sin(φ) = F ′ W ′ = F ′ S′ (ǟǠ)

which establishes that W ′′′ and S′′′ lie on the two branches of a limaçon generated by
the equatorial circle on diameter CF ′ with C as pole.

The day curves projected into the equatorial plane exhibit an asymmetry that has
an analogue in planar sundials. As we have seen, the day curves corresponding to solar
declinations of +δ and −δ are the intersections of the sundial surface with the two naps
of a single double-napped cone. Hence from the modern perspective the two hyperbolic
day curves for equal but opposite declinations on a planar sundial are the two branches
of a single hyperbola (a Greek geometer would have called them a pair of ‘opposite’ hy-
perbolas); but the straight line that is the day curve for the equinoxes is not equidistant

ǟǧǦ
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Fig. ǟǡ Section of sundial
sphere in arbitrary plane through
eyehole point C and perpendicu-
lar to the equator.

from the branches – this is very obvious in horizontal and south-facing vertical sundials.
Similarly in the roofed spherical sundial, since the diameter of the generating circle of
the limaçon projected in the plane of the equator for declination ±δ is not CE but CF ′,
which is progressively smaller thanCE as δ increases, the projections of the day curves for
positive declinations are crowded closer together than those for negative declinations.
However, on the spherical surface itself the arcs separating the day curves for ±δ from
the equinoctial day circle, measured along the circular section through C and perpen-
dicular to the equator as in Fig. ǟǡ, are equal to each other and subtend the same central
angles (2δ) as their counterparts in the plane of the meridian.24 Since it is easy to draw
a series of these circular sections on the spherical bowl – they are the circles through C
whose centers lie on the great circle of the sphere parallel to the equator – this property
would make it easy to accurately construct the day curves pointwise. Moreover, a viewer
standing reasonably close to the sundial will see a clearer separation between the day
curves near that of the summer solstice than one gets in the equatorial projection.

24 Gibbs (ǟǧǥǤ, ǧǦ–ǧǧ, note ǟǞ) incorrectly states that
the arcs separating the day curves for ±δ from the

equinoctial curve are constant as measured along
great circles through C.
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Vitruvius ascribes the hemicyclium or roofed spherical sundial to Berossus the Chal-
dean, the Babylonian scholar who reportedly resided in Kos in the third century BC.
We may reasonably be skeptical about this attribution.25 But it is interesting to observe
the company Berossus keeps in Vitruvius’s list of inventors of sundial types, among
whom we find Eudoxus, Aristarchus of Samos, Apollonius, and Dionysodorus, all of
whom were distinguished mathematicians or mathematical astronomers. Whatever the
specific accuracy of these credits, Vitruvius leaves us in no doubt that sundial design was
regarded as field appropriate for a mathematician, and that the great variety of sundial
types was a manifestation of scientific creativity. Many of the known examples of roofed
spherical sundials were prestige objects exhibiting a high level of ornamental as well
as geometrical skill in their sculpture. The comparative popularity of the type likely re-
sulted in part from certain practical advantages. Unlike vertical sundials, they yielded an
easy reading of the hour at all seasons and all times of day; while, unlike conventional
spherical or conical sundials, they were well suited to mounting at eye height or above.
But beyond this, the unobvious beauty of the inscribed curves of a well-executed roofed
spherical sundial would have pleased the mind as well as the eye of the connoisseur.

25 See Steele ǠǞǟǡ for a judicious consideration of the
astronomical and astrological testimonia concerning
Berossus, concluding that some of the reports may
be genuine but that Berossus had little or no con-

nection with genuine Babylonian astronomy. The
alleged invention of the sundial is mentioned on
pp. ǟǟǦ–ǟǟǧ.
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The paper starts by looking at how ‘practical’ and ‘theoretical’ mathematics and their rela-
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I suppose I have known Lis longer than any other contributor to this volume, years be-
fore any of us knew we would end up as historians – namely since she started university
in ǟǧǤǢ. By then, or at least a couple of years later, she intended to study physics, as I ac-
tually did. But even that was in the future – potential and never actualized future in Lis’s
case, as we know. Actually, physics was not what we spoke about by then; during her
first year in mathematics, I was her instructor of algebra, so it was boolean logic, linear
algebra and groups. Even though Lis was always sitting as far back as possible, I remem-
ber where she was sitting, close to the window. Already in first-year algebra, she was of
course impressively bright. So, when we later ended up in our present-day pigeon-holes,
we were in no doubt about each other.

Having never worked on astronomy (except when review editors have sent me some-
thing on the topic, not knowing that ‘Babylonian mathematics’ and ‘Babylonian astron-
omy’ are not only different topics but also on the whole as far in time from each other
as Charlemagne from Churchill), I shall not contribute anything within Lis’s own field.
Instead I shall present a bird-eye’s view of something I know better.

However, before approaching that subjectmatter, let me offer a personal note: I be-
lieve – but obviously cannot be sure about a matter of this kind – that my interest in
practitioners’ knowledge as an autonomous body goes back to the three years I taught
physics at an engineering school some forty-five years ago, having thus moved away from
the environment where I had met Lis. Among other things I remember one episode
which to me has always illustrated the relationship between theoretician’s knowledge
and what is often (too often, I would argue) supposed to be its ‘application’. Two col-
leagues – say, B and H – planned and held a course in electrodynamics for students of
constructional engineering. H had been trained as an engineer himself, while B was a
nuclear physicist. They were very good friends, and agreed upon most of what one can
agree upon in this world. None the less, H one day complained to me that “B removes a
Maxwell equation a year, but nothing changes!” Evidently, merely simplification of high
theory was not what was needed in order to bridge the gap between the theoretician’s
and the engineering organization of knowledge.

ǟ Proto-historiography

Herodotos, followed by numerous other ancient Greek writers until Proclos, main-
tained that geometry began as (Egyptian) practice, and was later transformed into (Greek)
theory; nothing was said by them about theory becoming in its turn the guide for the
corresponding practice, although Hero and a few others tried to accomplish something
like that (with modest impact outside the realm of war machines).

ǠǞǦ
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The standard view of the High Middle Ages – the epoch where the Latin Middle
Ages had developed a scientific culture enabling them to form an opinion of their own
in the matter and not just repeat what had already been repetition with Isidore – was
not very different. In the introduction to the ‘Adelard III’ version of the Elements1 we
read that in the case of geometry, as in that of any other skill (facultas), usus not only
preceded theory (artificium) but also continues to exist as the exercitatio of the skill; the
main difference with respect to Antiquity is that the writer – himself certainly an artifex –
demonstrates to have some interest in the practical exercitatio, as could reasonably be
expected from someone who had Hugues de Saint-Victor in his intellectual luggage.

Though knowing the field of mathematics, perhaps both as theory/artificium and as
a tool for practice / an exercitatio, neither Antiquity nor the medieval epoch was familiar
with the figure of the mathematician in our sense of the word. At first, a ̵α̵̱̰α̲̳̽ό̻ was
a member of a branch of the Pythagorean movement; later in Antiquity, the mathematicus
would mostly be an astrologer of the ‘Chaldean’ type; the teacher of the mathematical
Liberal Arts – the closest we may perhaps come to a professional mathematician – would
mostly be designated a geometer, while a ̵α̵̱̰α̲̳̽ό̻ in the teacher’s garb might teach
any liberal or philosophical art. Aristotle does speak about the person who is engaged in
mathematical argumentation as a ̵α̵̱̰α̲̳̽ό̻, but this is a personification of his ideal
of epistemological autonomy of the various fields of knowledge, still no professional
role. The Latin Middle Ages often did try to distinguish between the matematicus, that
is, the astrologer, and the mathematicus, the one who practiced mathematics; but it would
be difficult to find a person who primarily identified himself as a mathematicus.

Attitudes begin to change in the Renaissance. In a lecture on the mathematical
sciences held in Padua by Regiomontanus in ǟǢǤǡ/ǤǢ (the introduction to a series of
lectures on al-Farghānī, printed by Schöner in ǟǣǡǥ),2 everything is seen in a (social as
well as metatheoretical) top-down perspective. Mathematics is essentially theory, deriv-
ing its deserved high prestige, on one hand from its roots in classical Antiquity, on the
other from its utility for philosophy and from its civic utility (which consists in procur-
ing courtly pleasure). Much lower merit is ascribed to the applications3 taught in the
abbacus school (commercial computation, area calculation, etc.), and next to none to
its use in material production. Whether these low-ranking applications are presumed to
derive from theory is not clear.

Regiomontanus was ahead of his times, not only in the sense that he was a better
mathematician than any contemporary in the Latin world but also in his attitudes to
the character and role of mathematics (attitudes that he could only develop because of
his mathematical insights and aptitudes); but a writer who is ‘ahead of his times’ is still

1 Ed. Busard ǠǞǞǟ, ǡǟ–ǡǠ.
2 Facsimile in Schmeidler ǟǧǥǠ.

3 An inadequate term, since it presupposes that the-
ory is ‘applied to’ (put upon) some practice; I use it
for lack of a comprehensible one-word alternative.
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bound to his times in many ways. A more mature expression of the conception of the
relation between theory and practice that ripened during the later Renaissance is found
in Vesalius’s introduction to his De humani corporis fabrica.4

Vesalius, of course, discusses the medical art, not mathematics. This art, in his opin-
ion, had been almost destroyed by the fact that responsibility for exerting it had been
parceled out into three shares: that of the physician, the one who knows the principles
of the art but does not know how to use a knife – or does not dare to lest his social stand-
ing might suffer; that of the pharmacist, who at least works under the guidance of the
physician (that is, under the control of the medical faculty of universities); and that of
the barber or surgeon, ignorant of everything according to Vesalius and therefore unable
to do adequately that which in fact he does: use his hands. The art can only be restored to
its former splendor if the three shares are once again united, and ‘the hand’ brought under
the control of the theoretically schooled physician. In other words: practice – even the dirty
practice of cutting and bloodletting – has to become applied science.

Vesalius, as is well known, inaugurated a period of rapidly progressing insights in
anatomy. Medicine understood as the art of healing did not keep up with this progress
in theory, but Vesalius had some sound justification for his claim. Slightly later we see a
similar but stronger claim being made for mathematics by Petrus Ramus. Ramus, as is
equally well known, wanted to avoid Euclid’s ‘Platonic error’, the teaching of theory for
theory’s sake; but his alternative was an edition of the Elements where the proofs had been
replaced by explanations of the utility of the single theorem. Theory should thus, as also
requested by Vesalius, reform its mind and discard the mistaken fear of practical utility
and dirty hands; but (reformed) theory should govern. In the historical introduction to
Ramus’s Scholae mathematicae5 this view reveals its purely ideological character in the
claim that the three famous great discoveries – the magnetic compass, gunpowder, and
printing – were made in Germany because the mathematician Heinrich von Hessen
had been forced to leave Paris in the ǟǡǦǞs and go to Vienna, thus inaugurating the
blossoming of German mathematics; Ramus also wonders6 that applied mathematics
flourishes more in Italy than elsewhere in spite of the modest number of university chairs
in mathematics, ignoring the existence of the abbacus school institution (deliberately
ignoring it for sure, just as he deliberately ignores Stiefel from whom he copies wholesale
though at the modest level he understands – probably indirectly but from authors like
Jacques Peletier who do tell their debt to Stiefel).

In the sixteenth century, the ‘mathematician’ became a recognized social role, not
least for those ‘higher mathematical practitioners’ who moved around the Italian courts;7
Baldi’s majestic Vite de’ matematici illustrate the development.

4 Vesalius ǟǣǢǡ, Ǡr–Ǡv.
5 Ramus ǟǣǤǧ, ǤǢ–Ǥǣ.

6 Ramus ǟǣǤǧ, ǟǞǥ.
7 Biagioli ǟǧǦǧ.
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What is most charitably characterized as Ramus’s pipedream gradually material-
ized as reality over the next couple of centuries – first by the efforts of Rechenmeister like
Tartaglia and Faulhaber to appropriate whatever Euclidean and Archimedean knowl-
edge they might need (for their practice or for their social standing), afterwards in the
interplay between these creators of new branches of mixed mathematics and mathe-
maticians with scientific training and engaged in developing useful knowledge, for in-
stance at the request of the Académie des Sciences. In his Mathematisches Lexikon from
ǟǥǟǤ, Christian Wolff recognizes that “mathesis practica, die ausübende Mathematick” as
a category does not coincide with “mathesis impura sive mixta, die angebrachte Mathema-
tick” – the latter being the application of mathematical understanding to “human life
and nature”, whether for the purpose of doing something or for obtaining theoretical
insight.8 He adds, however, that

It is true that performing [ausübende] mathematics can be learned without rea-
soning mathematics; but then one remains blind in all affairs, achieves nothing
with suitable precision and in the best way, at times it may occur that one does
not find one’s way at all. Not to mention that it is easy to forget what one
has learned, and that that which one has forgotten is not so easily retrieved,
because everything depends only on memory. Therefore all master builders,
engineers, calculators, artists and artisans who make use of ruler and compass
should have learned sufficient reasons for their doings from theory: this would
produce great utility for the human race. Since, the more perfect the theory,
the more correct will also every performance be.9

After the creation of the École Polytechnique and its nineteenth-century emulations
there was no longer any need to repeat this protestation. For pragmatic reasons, Wolff’s
distinction between the ‘practical’ and the ‘mixed’ could be discarded – as it was already
discarded in the names given by Gergonne and Crelle to their journals, respectively An-
nales de mathématiques pures et appliquées and Journal für reine und angewandte Mathematik.

Ǡ Historiography

Modern historiography of mathematics begins, we might say, with the generations from
Montucla and Cossali to Libri and Nesselmann. These were still close to the victory
of the ‘Vesalian’ subordination of practice under reformed theory, and furthermore

8 Wolff ǟǥǟǤ. On pp. ǦǤǤ–ǦǤǥ Wolff observes that “ev-
erything in mathematics beyond arithmetic, geom-
etry and algebra [which constitute his ‘pure mathe-
matics’] belongs to accommodated mathematics”. As

everywhere in the following where no other transla-
tor is identified, the translation is mine.

9 Wolff ǟǥǟǤ, ǦǤǥ.
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brought up mathematically before the triumphs of the ‘new’ pure mathematics inaugu-
rated by Cauchy, Abel, etc. Finally, they were hungry for sources of any kind. No wonder
hence that their attitudes would still have some of their roots in the situation delineated
by Wolff. Montucla, when telling in his second edition10 about Ottoman, Arabic, Per-
sian, and Indian mathematics, actually applies what in one of the current meanings of
that word can be characterized as an ethnomathematical perspective, describing (briefly)
teaching practices as well as the uses of mathematics and computation in general social
life.11

However, the interest in practical mathematics did not die with their generations.
When dealing with pre-Modern mathematics, historians like Boncompagni, D. E. Smith,
Tropfke, Karpinski, and Vogel would still pay much attention to sources that had their
roots in practice. At least as a rule, they abstained from using the term ‘mathematicians’
about the originators of what several of them termed ‘school mathematics’ or ‘elemen-
tary mathematics’. Given the sources they relied on,12 neither designation was mistaken;
but they express a belief in the unity of the mathematical genres that agrees with Wolff’s
ideal (and with the perspective of their own times) but not – as I shall argue – with the
social reality of pre-Modern mathematics.

Around ǟǧǡǞ, the perspective changed.13 History of mathematics came to be un-
derstood as the history of the mathematics of mathematicians, and mathematicians tended
to be defined in post-Cauchy-Abel terms. In part that was a consequence of the disap-
pearing interest in European medieval mathematics, on which next to nothing was pub-
lished between ǟǧǠǞ and ǟǧǢǦ.14 But this explanation from the object of the historian
is partial at best: in the ǟǧǠǞs and the early ǟǧǡǞs, the appearance of two good editions
of the Rhind Mathematical Papyrus and the publication of the Moscow Mathemati-
cal Papyrus spurred some further publication activity; from the late ǟǧǠǞs onwards, the
Babylonian mathematical texts were cracked and published, which had a great impact,
not least through the acceptance of Neugebauer’s thesis about the descent of Greek ‘geo-
metric algebra’ from Babylonian ‘algebra’. However, in the perspective of the epoch, even

10 Montucla and Lalande ǟǥǧǧ–ǟǦǞǠ, in particular
Vol. I, ǡǧǥ–ǢǞǠ, but also elsewhere.

11 Cf. D’Ambrosio ǟǧǦǥ; Mesquita, Restivo, and
D’Ambrosio ǠǞǟǟ.

12 Namely, manuscripts and printed works. Montu-
cla, when making his proto-ethnomathematics, had
relied on ethnographic informants (diplomats and
other travelers), and elsewhere uses his direct ac-
quaintance with practitioners to supplement what
he can document from written sources. But the his-
torians of mathematics of the following ǟǣǞ years,

like other historians from von Ranke’s century, re-
lied on documents.

13 Given, for instance, that Vogel lived and worked
until ǟǧǦǣ it goes by itself that this statement is an
extremely rough approximation to wie es eigentlich
gewesen, permissible only in the context of an intro-
ductory discussion.

14 Most of the few publications that did appear are
from Karpinski’s hands. If these are excluded, the
general absence of interest in medieval Latin and
vernacular European mathematics becomes even
more striking.
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Babylonian mathematics came to be understood as the product of ‘Babylonian math-
ematicians’.15 Moreover, even the historiography of Early Modern mathematics tended
to turn away from the applications of mathematical theory and to concentrate on ‘real’
mathematics.

ǡ Missed opportunities

Two events should be mentioned at this point, not because they affected the historiog-
raphy of mathematics but rather because it might seem strange that they did not.

The first is the renowned intervention of Soviet scholars at the London Congress of
the History of Science in ǟǧǡǟ.16 Within the historiography of science, Boris Hessen’s
paper on “The Social and Economic Roots of Newton’s Principia” was indubitably the
one that had the strongest impact. By way of J. D. Bernal’s reception and ensuing suc-
cessful campaign for the implementation of science policy, Bukharin’s paper on “Theory
and Practice from the Standpoint of Dialectical Materialism” and M. Rubinstein’s pre-
sentation of the “Relations of Science, Technology, and Economics under Capitalism
and in the Soviet Union” were probably those that were most consequential.

Hessen’s paper was written under conditions which his audience did not know
about, and carried a subtle message that it missed.17 Bukharin shared Hessen’s fate not
only in life (both fell victims to Stalin’s purges in ǟǧǡǦ) but also as regards his London
paper. As observed by I. Bernard Cohen, “Bukharin’s piece remains impressive today
[c. ǟǧǦǧ] to a degree that Hessen’s is not”.18 But that went largely unnoticed in ǟǧǡǟ.

Bukharin discusses the relation between theory and practice both from an episte-
mological and from a sociological point of view. On the first account he emphasized
that knowledge comes not from pure observation but from intervention in the world –
which may not go beyond what he cites from Marx, Engels, and Lenin though certainly
beyond what his audience knew about what these authors had said, and which in any
case had to wait for Mary Hesse and Thomas Kuhn before it was accepted outside Marx-
ist circles. On the second account – the one that is relevant for our present purpose – he
emphasized the complexity and historically conditioned mutability of the relation be-
tween knowledge and practice, as well as the changing ways in which different types of
knowledge are distributed between carriers with different social roles.

15 I do not remember Neugebauer to have employed
the expression; in Neugebauer ǟǧǡǢ, ǟǠǣ n. ǟ he re-
jects the notion of ‘mathematicians’ very explicitly
with reference to Egypt; but it was used by Thureau-
Dangin – e.g., Thureau-Dangin ǟǧǡǦ, xxxviii – and
afterwards by various other authors, although most
would speak simply of ‘the Babylonians’.

16 The Soviet contributions, printed already at the mo-
ment, were reprinted in ǟǧǥǟ as Science at the Cross
Roads (Bukharin et al. ǟǧǥǟ).

17 See Graham ǟǧǧǡ, ǟǢǡ–ǟǣǟ.
18 Graham ǟǧǧǡ, ǟǢǟ.
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As alluded to, Bukharin’s subtleties proved too subtle for the Western audience,
and had no impact.19 Even Joseph Needham, who later was to make the non-trivial
interplay between ‘clerks and craftsmen’ a favorite theme of his, only saw Bukharin’s
paper as “in its way a classical statement of the Marxist position”.20 Needham instead
received his impulse from the second of the above-mentioned events: Zilsel’s paper on
“The Sociological Roots of Science”21 (as well as other papers by the same author).

Recent work on Zilsel’s Nachlaß22 shows that this and other papers of his from the
same period belong within a larger metatheoretical project that never materialized as
such. As it stands and on its own, the paper argues that the discussion about the root of
the new science of the late sixteenth and the seventeenth century – whether scholastic
thought, Humanism, or the knowledge of engineers like Leonardo da Vinci – is mis-
taken, since it was the interplay between natural philosophers belonging to the scholastic
tradition, trained Humanists, and ‘higher artisans’ that made possible the breakthrough.

Needham was not the only historian of science to be impressed by Zilsel’s paper,
which (like Hessen’s article) indeed called forth a number of other publications either
taking up the thesis or explicitly arguing against it. Strangely, however, no historian of
mathematics seems to have addressed the questions whether Zilsel’s thesis might apply
mutatis mutandis to the revolution in early Modern mathematics.23 Initially this non-
reaction was perhaps not so strange – at the time, and for long, historians of mathematics
saw in the most important group of ‘higher artisans’ of relevance for the question (the
Italian abbacus masters) nothing but not very competent vulgarisateurs of Leonardo Fi-
bonacci (if they happened to know at all about their existence); ascribing to such people
a stimulating influence was more than could be expected from historians concentrating
on the mathematics of (great) mathematicians.24

19 They may also have been too subtle for his fellow-
countrymen, but until Bukharin’s rehabilitation in
ǟǧǦǦ these had other reasons not to get too close.
For decades, the points of view expressed by the So-
viet delegation at the London Congress could only
be discussed in the Soviet Union as filtered through
Bernal’s not very sophisticated reception.

20 Bukharin et al. ǟǧǥǟ, ix.
21 Zilsel ǟǧǢǠ.
22 Raven and Krohn ǠǞǞǞ.
23 At least not before I organized an international

workshop on the theme “‘Higher artisans’, Human-
ism and the University Tradition. The Zilsel thesis
reconsidered in relation to the Renaissance trans-
formation of mathematics” in ǟǧǧǦ – but even then
it did not really happen (Paolo Rossi, who would
probably have understood, was forced to cancel his
participation). In consequence, I had to take up the
theme on my own in Høyrup ǠǞǟǟ.

24 Karpinski’s closing commentary to Jacopo da
Firenze’s abbacus treatise, though preceding Zilsel’s
paper, is characteristic of the attitude that pre-
vailed afterwards (Karpinski ǟǧǠǧ, ǟǥǥ): “[the early
fourteenth-century] treatise by Jacob of Florence,
like the similar [late fifteenth-century] arithmetic of
Calandri, marks little advance on the arithmetic
and algebra of Leonard of Pisa. The work indi-
cates the type of problems which continued cur-
rent in Italy during the thirteenth to the fifteenth
and even sixteenth centuries, stimulating abler
students than this Jacob to researches which bore
fruit in the sixteenth century in the achievements
of Scipione del Ferro, Ferrari, Tartaglia, Cardan and
Bombelli.” As we see, Fibonacci, Jacopo, Calandri,
and Bombelli are supposed to belong on the same
branch, although part of it has undergone some de-
generation.
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No ‘event’ but a process has been the increasing awareness within the history of tech-
nology that pre-nineteenth-century technical knowledge, including knowledge leading
to technical innovation, cannot be adequately described as ‘applied science’. Even this
process has left fewer traces in the historiography of mathematics than it should perhaps
have done.

Ǣ ‘Popular’ or ‘sub-scientific’

In spite of the invitations of Bukharin and Zilsel it thus remained common, to the ex-
tent the mathematics of medieval and other pre-Modern practitioners was at all taken
into account and seen as a different body than that of the ‘scientific’ traditions, to char-
acterize it as ‘popular’ or ‘folk’. I still did so myself in in my contribution to the Sar-
ton Centennial Conference25 when discussing the roots for those aspects of the Islamic
mathematical corpus which lexicographers like al-Nadīm do not trace to the Greeks but
treat as anonymous traditions or fail to mention.

But evidently neither the use of the ‘Hindu numerals’ nor trigonometry were known
at the time by ‘people’ in general; these kinds of supposedly ‘popular’ knowledge were
carried by narrow social groups and thus certainly constituted specialists’ knowledge. In
consequence I began speaking of these sources and the traditions to which they belonged
as ‘sub-scientific’, first in passing,26 then more analytically.27 On occasion of Bukharin’s
centennial I elaborated this discussion,28 emphasizing the oral cultural type of the car-
rying environment and pointing (i) to the function of (what has come to be misnamed)
‘recreational problems’29 as ‘neck riddles’ that display appurtenance to a particular craft
carrying a particular body of know-how, (ii) to the possibility to use these problems (as
eventually adopted into cultures leaving written sources, thereby becoming properly
‘recreational’) as index fossils allowing us to trace an oral culture that in the nature of
things is not directly documented in writing.30

In this paper I still used the term ‘sub-scientific’ about scribal as well as non-literate
practitioners’ mathematics, singling out the former type as nothing but a sub-category.
Schools – even pre-Modern schools teaching practical mathematics – certainly vary in

25 Høyrup ǟǧǦǢ.
26 Høyrup ǟǧǦǤ.
27 Høyrup ǟǧǦǥ.
28 Published as Høyrup ǟǧǧǞb.
29 More precisely: the problems become ‘recreational’

when adopted into literate culture; the term is only
a misnomer in relation to their original function.

30 Also in the later ǟǧǦǞs, David King investigated
the astronomy of Islamic legal scholars and pointed
out that it was distinct from the astronomy of math-
ematicians. He used the term ‘folk astronomy’ but
left no doubt that it was the astronomy of the ‘craft’
of legal scholars. See the papers contained in King
ǟǧǧǡ.

Ǡǟǣ



̞̣̚̕ ̘ø̢̩̥̠

character, and can be argued to constitute a pluri-dimensional continuum merging grad-
ually into oral apprenticeship teaching on one side; but it is also difficult, even in several
pre-Modern settings, to make a totally clean cut between schools teaching for practice
and schools teaching ‘scientific’ mathematics.31 I would therefore now distinguish be-
tween the sub-scientific knowledge type, carried by practitioners taught in an apprentice-
ship network; the ‘scholasticized’ or scribal practitioners’ knowledge type, communicated
in a school by masters whose own genuine practice is that of teaching, not the practical
use of the knowledge they teach; and the ‘scientific’ or theory-oriented type, the one to
which historians of mathematics have dedicated most of their efforts – keeping in mind
that these are fuzzy categories understood through ideal types functioning as naviga-
tional guides rather than classificatory boxes.32

ǣ Applications of the categorization

Networks of categories constitute an instance of formal knowledge (albeit of the most
primitive kind). Their utility thus depends on their ability to create order in the tangle
of real-world phenomena – those from which they were derived in the first instance
through a process of abstraction (that should be the easier but still the obvious first test)
as well as others that did not intervene when they were constructed (not necessarily
quite as easy). I shall look at one instance of each kind.

When speaking for the first time of a ‘sub-scientific tradition’ in ǟǧǦǤ I referred to
the tradition that linked Old Babylonian ‘algebra’ to the area riddles in Abū Bakr’s Liber
mensurationum. Some years later,33 I also voiced a suspicion that the problem BM 13901
#23 (dealing with a square, for which the sum of the four sides and the area is given)
was “a surveyors’ recreational problem, maybe from a tradition that was older than –
perhaps even a source for – Old Babylonian scribal school ‘algebra’”; I also observed the
family resemblance of the configuration used in the solution with one of al-Khwārizmī’s
proofs. However, by then I had to leave both matters there.

Over the following years, being alerted to the stylistic peculiarities that might char-
acterize fresh borrowings from an oral tradition as well as to those that should corre-
spond to transmission within a stable school environment (and being in general stimu-
lated to be sensitive to stylistic detail and not only to so-called ‘mathematical substance’)

31 See, for late Greco-Roman Antiquity, Cuomo ǠǞǞǞ.
32 Cf. Høyrup ǟǧǧǥ. It might be useful to distinguish a

fourth type, the ‘deuteronomic’ teaching of theory
petrified into and taught in school as a dignified tra-
dition – the shape in which most of the students
taught scientific mathematics have encountered

their Euclid since two thousand years; cf. Netz ǟǧǧǦ.
But since my topic is the relation between mathe-
matical practice and mathematical theory I shall not
pursue this theme at present.

33 Høyrup ǟǧǧǞa, Ǡǥǣ.
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I was able (that is at least my own opinion) to put on a firmer footing than done before
the claim that Old Babylonian ‘algebra’ and Euclidean ‘geometric algebra’ (both ‘so-
called’) were connected, and to demonstrate also that the geometric riddles of Arabic
misāh

˙
a treatises as well as al-Khwārizmī’s geometric proofs for the basic al-jabr proce-

dures belonged within the same network. Moreover I could argue (still of course in my
own opinion) that the Old Babylonian ‘algebraic’ school discipline built upon original
borrowings from the neck riddles of a lay surveyors’ environment, and that this en-
vironment and its riddles, not the tradition of scholar-scribes, was responsible for the
transmission of the inspiration to later times.

Since I have described this analysis and its outcome at length elsewhere,34 I shall
not go into further detail, but turn instead to a historical phase which I started looking
seriously at some fifteen years ago: the Italian abbacus school of the late Middle Ages
and the Renaissance, and its relation to Leonardo Fibonacci.

Karpinski, who was one of the first to describe the stylistic peculiarities of an ab-
bacus treatise (Jacopo da Firenze’s above-mentioned Tractatus algorismi from ǟǡǞǥ, in
Tuscan in spite of the Latin title, and written in Montpellier), though quite aware of its
deviations from what can be read in Fibonacci’s Liber abbaci, still appraised its contents
as if it was only a station on the road from Fibonacci to Scipione del Ferro (see note ǠǢ).
At the moment little systematic work had been done on abbacus material,35 but things
did not change even when Gino Arrighi and his pupils had published an appreciable
number of manuscripts. Wholly in Karpinski’s vein, Kurt Vogel stated that Cowley’s
description of the Columbia ms X 511 A1 3 had been important because it “filled a la-
cuna between Leonardo da Pisa’s Liber abbaci and Luca Pacioli’s Summa”.36 Even sharper
are the formulations of those who have worked most intensely on the material – thus
Warren Van Egmond, according to whom all abbacus writings “can be regarded as […]
direct descendants of Leonardo’s book”,37 and Raffaella Franci and Laura Toti Rigatelli,
according to whom “the abacus schools had risen to vulgarize, among the merchants,
Leonardo’s mathematical works”.38 More recently, Elisabetta Ulivi – probably the scholar
who has worked most in depth on the social history of the abbacus environment – has
expressed the view that the abbacus treatises “were written in the vernaculars of the vari-
ous regions, often in Tuscan vernacular, taking as their models the two important works
of Leonardo Pisano, the Liber abaci and the Practica geometriae”.39

34 Most extensively in Høyrup ǠǞǞǟ and Høyrup ǠǞǞǠ,
ǡǤǠ–Ǣǟǥ.

35 Karpinski (ǟǧǟǞ/ǟǧǟǟ) describes another abbacus
algebra, and Cowley (ǟǧǠǡ) analyzes a whole trea-
tise. During the nineteenth century a number of ex-
cerpts had been published by Libri, Boncompagni,
and others, but no coherent descriptions of whole

treatises (nor a fortiori of the category as such) had
appeared.

36 Vogel ǟǧǥǥ, ǡ.
37 Van Egmond ǟǧǦǞ, ǥ.
38 Franci and Toti Rigatelli ǟǧǦǣ, ǠǦ.
39 Ulivi ǠǞǞǠ, ǟǞ. Similarly in more recent publica-

tions.
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All of these, I would claim, have fallen victims to the ‘syndrome of The Great Book’,
the conviction that every intellectual current has to descend from a Great Book that is
known to us at least by name and fame – the same conviction that made those who ob-
jected to Neugebauer’s proposed transmission observe that no Greek would have both-
ered to read the Babylonian clay tablets, and induced many of those who have discussed
the possible borrowing of Indian material into Arabic algebra to believe that inspiration
had to come from the writings of an Āryabhat

˙
a or a Brahmagupta.

Already Karpinski had noticed that Jacopo’s algebra has no problems in common
with the Liber abbaci. Reading of the whole treatise shows it to have no single problem,
algebraic or otherwise, in common with the Great Book, but to contain on the other
hand numerous problems belonging to classes that are also present in that Book.40 Some
of these belong to the cluster of problems that are found in ancient and medieval sources
“from Ireland to India”, as Stith Thompson says about the ‘European folktale’41 – and
even in the Chinese Nine Chapters. This cluster of problems usually going together was
apparently carried by the community of merchants traveling along the Silk Road42 and
adopted as ‘recreational problems’ by the literate in many places; it is thus a good ex-
ample of a body of sub-scientific knowledge influencing school knowledge systems in
many places and an illustration of the principle that it is impossible to trace the ‘source’
for a particular trick or problem in a situation where “the ground was wet everywhere”.43

Other problem types are shared with Fibonacci but not diffused within the larger
area (or diffused within a different larger area that may coincide with the Arabic network
of sea trade from the Indian Ocean to the Mediterranean). Moreover, Jacopo employs
a range of set phrases (“et così se fanno tucte le simile ragioni”, “se ci fosse data alcuna
ragione”, etc.) that also turn up copiously in other abbacus writings as well as in similar
writings from the Provençal-Catalan and the Castilian area44 – and also, but on so rare
occasions that they seem to represent slips, in Fibonacci’s text.

A slightly earlier Umbrian abbacus treatise (Florence, Riccardiana ms. 2404, from
c. ǟǠǧǞ)45 claims in its title to be “according to the opinion” of Fibonacci. Analysis of
the text shows this claim to be misleading.46 Everything basic in the treatise is as dif-
ferent from what we find in the Liber abbaci as is Jacopo’s Tractatus (and characterized
by the presence of the same set phrases); but the writer borrows a number of sophis-
ticated problems from Fibonacci, often demonstrably without understanding even as

40 Cf. Høyrup ǠǞǞǥ, which contains an edition and
English translation of the work.

41 Thompson ǟǧǢǤ, ǟǡ.
42 Some of the traveling problems deal precisely with

bits of this web of caravan and sea routes extending
from China to Cadiz, and no other network (how-
ever open-ended) existed that ranged so widely.

43 Høyrup ǟǧǦǥ, ǠǧǞ.

44 See Sesiano ǟǧǦǢ, a description of the Pamiers al-
gorism; Malet ǟǧǧǦ, an edition of Francesc Santcli-
ment’s Summa de l’art d’aritmetica; and Caunedo del
Potro and Córdoba de la Llave ǠǞǞǞ, an edition of
the Castilian Arte del alguarismo.

45 Arrighi ǟǧǦǧ.
46 Høyrup ǠǞǞǣ.
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much as the notation of his source. Obviously, Fibonacci had already become a kind of
culture hero (modern historians are not the first to fall victims to the syndrome of The
Great Book), and the borrowings serve as embellishment beyond the ordinary teaching
matters.

From combination of these pieces of evidence it becomes obvious that Jacopo’s as
well as the Umbrian treatise refer to an environment spread out in all probability over
much of the Romance-speaking Mediterranean region, already in possession of elemen-
tary vernacular literacy and probably based in some kind of school teaching similar to
the Italian abbacus school but with at most tenuous ties to the world of university schol-
ars. It also becomes clear that already Fibonacci had drawn part of his inspiration for the
Liber abbaci from this environment, whose existence thus antedates ǟǠǞǞ (or at the very
least ǟǠǠǦ).

Analysis of Jacopo’s algebra chapter and comparison with Arabic algebraic writings
suggests that it is ultimately drawn from another level of Arabic algebra than that of
the Great Books of al-Khwārizmī, Abū Kāmil, Ibn al-Bannā֓, etc. It seems likely – but
for the time being cannot be conclusively established – that the just-mentioned school
environment was not restricted to the Romance-speaking area but also reached into
(and probably came from) a similar environment in the Arabic Mediterranean teaching
mu֒āmalāt-mathematics (even Arabic merchants must have learned their mathematics
somewhere, including the use of the rule of three to which already al-Khwārizmī had
dedicated the “Chapter on mu֒āmalāt” of his Algebra.47 That school in Bejaïa in which
Fibonacci tells to have spent “some days” learning the studium abbaci48 is likely to have
been such a school (the alternative, a mosque school, is not plausible).49

Though in all probability a descendant of a school environment that had inspired
both Fibonacci and Jacopo, the mature Italian abbacus school of the fourteenth and
fifteenth century developed characteristics that are not likely to have been present be-
fore ǟǡǟǞ – characteristics that appear to have depended on the market competition
between abbacus masters for jobs and pupils. Both the Umbrian abbacus and Jacopo’s
treatise make mathematical mistakes from time to time – but they abstain from mathe-
matical fraud. Already within the first two decades after Jacopo’s writing of (what is in
all probability) the first Italian vernacular algebra, on the other hand, abbacus treatises

47 Ed. Rosen ǟǦǡǟ, Arabic ǢǦ.
48 Ed. Boncompagni ǟǦǣǥ, ǟ.
49 Some of the formulations in Jacopo’s discussion of

metrologies are strikingly similar to what we find in
Ah

˙
mad ibn Thabāt’s Reckoners’ Wealth from c. ǟǠǞǞ

(Ġunyat al-h
˙
ussāb, ed. Rebstock ǟǧǧǡ), which how-

ever both surpasses what it would be reasonable to
teach to practical reckoners (e.g., Euclidean geo-
metric definitions) and offers too little training for

these; but ibn Thabāt was a scholar who taught law
as well as h

˙
adīth and ֒ilm al-h

˙
isāb at the Niz

˙
āmīya

madrasah (Rebstock ǟǧǧǡ, x), and thus wrote a
scholarly book about practitioners’ mathematics,
no textbook for the training of merchant youth.
Apart from his own intellectual pleasure, he may
have been motivated by what (for instance) a judge
had to understand about all domains of practical
computation.
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begin to present blatantly false rules for irreducible equations of the third and fourth
degree – not easily unmasked by competitors, however, because the examples are al-
ways chosen so as to lead to ‘solutions’ containing radicals. Only at a moment when
abbacus-trained writers like Luca Pacioli began moving on the interface between the
Humanist-courtly and the scholastic-scholarly areas50 was the fraud exposed – and only
then was there space for del Ferro’s genuine solution to contribute to the revolution in
mathematics (in good agreement with the Zilsel thesis, we might say).

Italian abbacus mathematics is thus not to be understood as an activity bridging
one Great Book (the Liber abbaci) and another one (e.g., Cardano’s Ars magna) but as a
distinct undertaking, carried neither by scholarly mathematicians nor by a purely oral
culture, yet having most of its ultimate roots in an environment close to the latter type,
and giving eventually important stimuli to the further development of scientific mathe-
matics. I shall permit myself to claim that the categorization suggested above is fruitful
in opening our eyes to evidence in the sources that has so far been overlooked, and thus
allows us to attain better understanding of the real historical process. At the same time
the example demonstrates that a seemingly simple category (‘schools’) covers phenom-
ena of widely different character, held together mainly by being neither orally based nor
‘scientific’ in ambition.51

50 That Luca moved in this zone is quite obvious, e.g.,
both from his preface to the De divina proportione
(ed. trans. Winterberg ǟǦǦǧ, ǟǥ–ǡǣ) and from his
publication of the Campanus version of the Ele-
ments.

51 This point could be sharpened if the abbacus school
were contrasted, e.g., with the Old Babylonian

scribe school, which eliminated mathematical fraud
(namely, mock solutions) from its sub-scientific her-
itage. Analysis of what happens to a specific prob-
lem type, e.g., the ‘hundred fowls’, might highlight
the difference between the genuinely sub-scientific
and the abbacus-school style.
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A Mysterious Circular Tablet with Numbers and Stars

Summary

In this paper we publish a unique circular cuneiform tablet which is divided into twelve
sectors each of which contains numbers and star names. Our analysis of the text suggests
that it contains astrological material related to the so-called Kalendertext scheme.
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In diesem Beitrag publizieren wir eine einzigartige kreisförmige Keilschrifttafel, die in zwölf
Sektoren eingeteilt ist, von denen jeder Zahlen und Sternnamen enthält. Die Textanaly-
se legt nahe, dass es sich um astrologisches Material handelt, das mit dem sogenannten
Kalendertext-Schema in Verbindung steht.
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̧̩̞̑̕ ̢̧̘̟̟̙̤̪ ̞̑̔ ̟̘̞̚ ̣̤̜̕̕̕

ǟ Introduction

BM 47762 preserves approximately one fourth of a round tablet with numerous nu-
merals and a small number of star-names. The tablet attracted the attention of Wayne
Horowitz during his search for exemplars of Astrolabes, including those in planisphere
form of the type CT 33 11–12.1 Horowitz quickly realized that the tablet had nothing to
do with Astrolabes and passed the text on to John Steele for further investigation. In the
following, we present a preliminary study of the text in the hope that others will be able
to offer a fuller explanation of the mathematical and astronomical/astrological schemes
at play on this unique member of the cuneiform corpus.

Fig. ǟ BM ǢǥǥǤǠ obverse.

Fig. Ǡ BM ǢǥǥǤǠ reverse.

1 For other circular astronomical texts, see Horowitz
and Al-Rawi ǠǞǞǟ.

ǠǠǤ
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Ǡ The tablet

The circular tablet fragment BM 47762= 81-11-03, 467 (Figs. ǟ and Ǡ), most likely from
Babylon, presents a set of numbers and star-names which place this text in the realm of
astronomy or astrology, and so the area of expertise of our friend and colleague Lis Brack-
Bernsen. What is almost certainly the obverse is divided into sectors, each containing
several lines of cuneiform text (the reverse is uninscribed except for unreadable traces of
a few wedges towards the center of the tablet). The surviving piece gives at least part of
four out of an original 12 sectors. A small piece of the outer edge of the tablet survives
in the third section from the left, with part of a circular incision that apparently served
as an outer border of the text when complete. Given the format of the tablet, sectors in
the shape of ‘pie-slices’, the available space in each line diminishes as one moves towards
the center of the circle. This enables us to determine how many lines are missing from
each of the other less well preserved sectors. The actual center of the circle is missing,
but it is likely that the very center of the circle was left vacant. In fact, if the tablet was
more complete we would probably find the impression of a compass point at the center
given that the arc of the surviving piece of the border at the edge of the tablet is so well
drawn. This is also the case for the dividing lines between the sectors, suggesting work
with an ancient ‘compass and ruler’. In contrast, the scribe struggles somewhat with the
problem of rendering cuneiform in his circular format leaving some signs squeezed,
or misshapen. As on all previously known circular astronomical/astrological tablets the
text is meant to be read from outside to inside. The obverse reads as follows:

Sector IX Sector X Sector XI Sector XII

(1) [x x x x] [x x x x] GU.LA 1 ⸢28⸣ [x x x x]

(2) [x x x x] [x x x x] 2 28 11 7 3 [x x x]

(3) [x x x x] [x] ⸢7 10 14⸣ 2 7 11 14 3 7 1[2 x]

(4) [x x x]⸢21⸣ 1 14 10 21 2 14 11 21 3 14 1[2 x]

(5) [x x x 2]⸢8⸣ 1 21 10 28 2 21 11 28 3 21 12 [x]

(6) [x x x x] 10 21 SAG.DU RÍN 11 21 〈ŠÚ〉 SAG.DU 12 21 SA[G.DU]

(6a)2 GÍR.TAB ŠUL.[PA.È?3]

2 (Transliteration, L. 6a) This line exists in Sector XI–
XII (see the commentary).

3 (Translit., L. 6a, Sector XII) We expect a reference
to Sagittarius here. Most likely the scribe intended

ǠǠǥ



̧̩̞̑̕ ̢̧̘̟̟̙̤̪ ̞̑̔ ̟̘̞̚ ̣̤̜̕̕̕

(7) [x x x] ⸢2⸣ 8 ÙZ 28 Á BIR 28 ŠUL.[PA.È]

(8) [x x x] [7 IG]I GIŠ.DA 7 IGI BIR 7 IGI [x (x)]

(9) [x x] [14 S]AG ⸢1⸣4 [SAG] 14 SAG

(10) [x x] [x x] x BI?4 [x x]

ǡ Commentary

The text has a rigid format with each sector containing ten entries. Each entry is written
on a separate line except in the case of line 6 where in sectors XI and XII the scribe ran
out of room and so continued onto an indented line 6a. In the following, we treat lines
6 and 6a together. The structure of the text allows most of the four partially preserved
sectors to be restored with certainty. Below we give a translation of the text including
restored text.

Sector IX Sector X Sector XI Sector XII

(1) [Sagittarius 11 28] [Capricorn 12 28] Aquarius 1 28 [Pisces 2 28]

(2) [12 28 9 7] [1 28 10 7] 2 28 11 7 3 [28 12 7]

(3) [12 7 9 14] [1] 7 10 14 2 7 11 14 3 7 1[2 14]

(4) [12 14 9] 21 1 14 10 21 2 14 11 21 3 14 1[2 21]

(5) [12 21 9 2]8 1 21 10 28 2 21 11 28 3 21 12 [28]

(6),
(6a)

[9 21 beginning
of Virgo]

10 21 beginning
of Libra

11 21 beginning
of Scorpio

12 21 begin[ning]
of Sagitt[arius!]

(7) [28 […]] 28 The She Goat 28 […] The Kidney 28 Šulpae

(8) [7 in front of […]] [7 in front of]
Jaw of the Bull

7 in front of
The Kidney

7 [in front of […]]

to write PA.BIL.SAG but instead wrote ŠUL.PA.È,
which also contains the PA sign and which appears

in the following line. An error of this kind suggests
that the scribe was copying another tablet.

4 (Translit., L. 10, Sector XI) BI or a more complex
sign which ends with a BI-type element.

ǠǠǦ



̑ ̢̝̩̣̤̙̟̥̣̕ ̢̢̙̥̜̓̓̑ ̤̜̤̑̒̕

(9) [14 beginning] [14 be]ginning 14 beginning 14 [beginning]

(10) […] […] […] […] […]

The preserved entry in line 1 of Sector XI indicates that each of the twelve sectors con-
cerned one sign of the zodiac and demonstrates that the preserved portion of the tablet
contains the final four sectors. Each entry in lines 2–5 contains a series of four numbers
in the following sequence, with variables a and b as the first and third numeral in each
line:

a 28 b 7a 7 b 14a 14 b 21a 21 b 28

In each case, the variables a and b are each less than or equal to 12, and both a and b in-
crease by 1 (moduli 12) from one sector to the next. Furthermore, b is always equal to
the number of the zodiacal sign (where Aries= 1, Taurus= 2, etc., up to Pisces= 12).
The use of numbers to refer to signs of the zodiac (and months in the ideals ǡǤǞ-day
calendar) is found in astrological texts which use the so-called Dodecatemoria and Kalen-
dertext schemes.5 Entries from these schemes are usually written out in the form of four
numbers (for example, 1 13 1 1) where the first and second numbers, and the third
and fourth numbers, are to be understood as either a position given with a sign of the
zodiac, and degree or a date in the schematic ǡǤǞ-day calendar given with the month
and day. This parallel suggests that in our text, the four numbers in each of lines 2–5 are
also to be understood as two pairs of either month and day, or zodiacal sign and degree.
The agreement between the number b and the sign of the zodiac found in line 1 seems
to confirm this interpretation of these numbers. The relation between the two pairs of
numbers in each entry does not follow either the Dodecatemoria or Kalendertext schemes,
however. In those schemes, the first pair of numbers should increase by 13 degrees or
277 degrees respectively for each increase of 1 degree in the second pair of numbers,
which results in a mapping of every position in the second pair onto a distinct position
in the first pair. The position generated by either scheme does not agree with what we
find here. Nevertheless, there does appear to be a connection between the numbers in
lines 3–5 and the Kalendertext scheme: if we take both a and b to be zodiacal signs, then
the number of degrees between the first pair of numbers and the second pair of numbers
is equal to 277, which is the characteristic number of the Kalendertext scheme. However,
the entry in line 2 does not follow this same rule. It seems likely, therefore, that the text

5 For an overview of these schemes, see Brack-Bernsen
and Steele ǠǞǞǢ.
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contains some type of astrological material which is related to the Kalendertext scheme
in some way, but which also exploits the pattern of numbers 7-14-21-28, which perhaps
corresponds to the phases of the moon.

Line 6 begins with the number of the zodiacal sign for the sector followed by the
number 21 and the statement ‘beginning of’ (literally ‘head of’) another zodiacal sign
which is nine signs further on from the sign of the sector. An interval of nine signs may
again relate to the Kalendertext scheme as 277= 9 signs+ 7 degrees.

Lines 7–9 (and probably line 10) each begin with a number from the 7-14-21-28
sequence followed by a star name preceded in line 8 by the term IGI, meaning either
‘in front of’ or ‘visible’, and in line 9 by the term SAG, meaning ‘at the beginning of’. The
stars given in line 7 are all known to be used as substitute names for planets in certain
omen texts: The She Goat for Venus, The Kidney for Mercury, and Šulpae for Jupiter.6

We think it likely, therefore, that line 7 should be interpreted as referring to the planets.
Beyond that, however, we do not understand the relationships between the numbers,
the star names, and the terms IGI and SAG in these lines.

This is as far as we can go in understanding our text.7 We present this text to Lis in
the hope that she will enjoy our exposition of this ‘mathemagical’ text and be able to
build upon our analysis to provide a fuller explanation of the text and its place in the
cuneiform astronomical-astrological corpus.

6 Reiner ǠǞǞǢ.
7 At the Regensburg IV conference in Berlin, Jeanette

Fincke presented a second fragment of this text and

proposed an alternative interpretation of its con-
tents. We refer the reader to her forthcoming study
for further details.
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An Ancient Celestial Empire of Benevolent
Knowledge

Summary

This paper deals with the concept of anomaly in cuneiform knowledge, looking mainly
at the principles of divinatory texts concerning norms and anomalies in ominous signs.
I consider here one way in which the system of divinatory knowledge was consistent with
early Babylonian approaches to knowledge of the heavens.

Keywords: Anomaly; sign; monster; norm; ideal.

Das Konzept der Anomalie in keilschriftlichem Wissen wird in diesem Beitrag behandelt.
Untersucht werden in erster Linie die Prinzipien jener divinatorischen Texte, die sich mit
Normen und Anomalien in unheilverkündenden Zeichen befassen. Auf diesem Weg prü-
fe ich, inwiefern das System divinatorischen Wissens mit frühen babylonischen Herange-
hensweisen an astronomisches Wissen übereinstimmte.

Keywords: Anomalie; Zeichen; Monster; Norm; Ideal.

This essay represents part of a chapter from my book Before Nature: Cuneiform Knowledge and
the History of Science (Chicago: University of Chicago Press, ǠǞǟǤ).
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̢̖̞̣̑̓̓̑̕ ̢̢̟̘̗̓̒̕

It is a distinct honor to contribute to a volume for Lis Brack-Bernsen, who has advanced
the understanding of Babylonian astronomy with her ground-breaking methodology to
explicate how and why the Babylonians observed the lunar horizon phenomena around
opposition that we call the Lunar Four. Focusing upon the use of those observational
data to construct the period of the moon in velocity and in latitude, she showed that col.Φ of the Babylonian System A lunar ephemeris, the column that advances by the Saros
period (223 months) line-by-line, is an argument of lunar anomaly. This paper deals
with anomaly from a quite different standpoint. Looking mainly at the principles of
divinatory texts concerning norms and anomalies in ominous signs, I reflect here on one
way in which the system of divinatory knowledge was consistent with early Babylonian
approaches to knowledge of the heavens.

In the preface to The Order of Things: An Archaeology of the Human Sciences, Michel Fou-
cault referred to the classification system of the fictive Chinese encyclopedia that Jorge
Luis Borges entitled the “Celestial Empire of Benevolent Knowledge”, where animals are
classified as

(a) belonging to the emperor, (b) embalmed, (c) tame, (d) sucking pigs, (e)
sirens, (f) fabulous, (g) stray dogs, (h) included in the present classification,
(i) frenzied, (j) innumerable, (k) drawn with a very fine camelhair brush, (l) et
cetera, (m) having just broken the water pitcher, (n) that from a long way off
look like flies.1

Foucault said,

In the wonderment of this taxonomy, the thing we apprehend in one great leap,
the thing that, by means of the fable, is demonstrated as the exotic charm of an-
other system of thought, is the limitation of our own, the stark impossibility of
thinking that. But what is it impossible to think, and what kind of impossibility
are we faced with here?2

Zhang Longxi critiqued Foucault’s analysis of Borges’ fabulous taxonomy on the grounds
that Foucault did not realize

that the hilarious passage from that ‘Chinese encyclopedia’ may have been
made up to represent a Western fantasy of the Other, and that the illogical way
of sorting out animals in that passage can be as alien to the Chinese mind as it
is to the Western. […] In fact, the monstrous unreason and its alarming subver-
sion of Western thinking, the unfamiliar and alien space of China as the image

1 Borges ǟǧǤǢ, ǟǞǡ. 2 Foucault ǟǧǥǡ, xv. Emphasis in the original.
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of the Other threatening to break up ordered surfaces and logical categories, all
turn out to be, in the most literal sense, a Western fiction.3

Certainly one of the striking features of Borges’ fictive list of categories is the way in
which it seems to focus on something that will not submit to the order of nature,
but rather has been given its own orientation to ‘something else’. And therein lies its
strangeness. On the other hand, the classifications inherent in Sumerian, Sumero-Akka-
dian, and Assyro-Babylonian lexical and divinatory texts are not fictive, but historically
real. The criteria for classification and making connections between elements of vari-
ous categories found in those texts, because they do not reduce to a desire to know and
classify nature, can have a similar effect.

Unlike China, ancient Babylonia and Assyria have not played the role of the Other
in the Western imagination so much as they have been conscripted into the role of pre-
cursors of Ourselves, of Western civilization. And yet when it comes to the analysis of
cuneiform corpora of knowledge, where the intellectual history of the ancient Near East
merges with the beginnings of Western science, we find ourselves confronted with clas-
sifications and categories, even phenomena, that sometimes confound our own sense of
the order of nature. Still, as conceived in the cuneiform world, the overriding goal of
the observation and interpretation of phenomena was to establish norms and anomalies
by means of which to find the order of things.

ǟ Categories of signs

In various compendia of ominous signs, phenomena are organized into a great many
categories. The organization of signs is sometimes such that a sign will be ‘seen’ that can-
not occur in the world. Moreover, the consequent of a sign, including one that cannot
occur, does not point to co-occurring events in the perceived world, but to associations
based on a hermeneutic code. This makes for a complex set of references from which
to reconstruct what it was that interested the scribes about the perceived world. The
basic impetus for detailed and systematic observation of the world was divination from
ominous signs.

James Allen pointed to the essential fact that

Our term ‘sign’ comes, of course, straight from the Latin signum, which in turn
renders the Greek ̵̼̰̮ῖ̸̶, whose range of uses it tracks pretty closely. Not only
the term, but the idea or complex of ideas for which it stands are an inheritance
from Greco-Roman antiquity.4

3 Zhang Longxi ǟǧǧǦ, Ǡǟ. 4 Allen ǠǞǟǞ, Ǡǧ.
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The persistent preoccupation with phenomena as signs continues on into later antique
and mediaeval science as well, with descendants in Western European, Eastern Byzan-
tine and Islamic traditions, not to mention Indian science. Peter Harrison, in a striking
statement, said that

For virtually the first fifteen hundred years of the common era the study of
natural objects took place within the humanities, as part of an all-encompassing
science of interpretation which sought to expound the meanings of words and
things.5

Divination and astrology found a central place among various ancient and medieval
cultures of knowledge, both from the point of view of prognostication as well as of the
philosophy of inference-making from signs.

Ancient cuneiform knowledge of what Harrison referred to as “natural objects”,
roughly for the fifteen hundred years before the Common Era, constitutes very much the
same thing that he identified for the first fifteen hundred years of the Common Era, i.e.,
it was “part of an all-encompassing science of interpretation which sought to expound
the meanings of words and things.” This is represented in the cuneiform tradition of
knowledge in the overwhelming focus by the scribes on the systematic and interpretive
science of divination from signs. The principal qualification must be in designating the
objects of this knowledge not as ‘natural objects’, but as observed, imagined, and con-
ceived objects in relation to physical as well as imagined things, and for the focus not on
observation of the signs alone, but on their interpretation according to systematic codes
embodied in textual compendia (some might argue it was really one code with partic-
ular variants for different domains of phenomena, say, exta, or births, or the stars and
planets). Both the idea of a sign and the hermeneutics of the texts together constituted
the science of signs in the culture of cuneiform knowledge.

In the West, the Hellenistic period saw a new focus on signs from astronomy to
philosophy. Already in the ǡrd century BCE Aratus began his poetic star catalog, the
Phaenomena (lines 5–6), as Katharina Volk noted, by reference to Zeus as giver of “pro-
pitious signs to humans”,6 thus framing the composition in terms of signs. Volk further
explained,

In addition to announcing the poem’s topic, this proem neatly states the Phae-
nomena’s conception of the world as a cosmos full of benevolent signs from an
omnipresent god who has the welfare of human beings at heart. […] The idea
of the sign is central to the Phaenomena, as is apparent from the fact that forms
of the noun ̼ῆ̵α (sēma, pl. sēmata) ‘sign’ appear 47 times in the course of the

5 Harrison ǟǧǧǦ, ǧ. 6 Volk ǠǞǟǞ, ǠǞǞ. Cf. also Netz ǠǞǞǧ, ǟǦǤ–ǟǦǥ.
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poem, those of the verb (ἐ̹̲)̵̼̰αἱ̶ω ‘to signal’ 11 times. The […] repetition
of these and similar keywords […] drives home the message that Aratus is not
interested in natural phenomena (e.g., the constellations) as such, but only in as
much as they are part of the cosmic system of signs that has its origin in the
benevolence of Zeus.7

Despite the cultural track running from Rome to Greece and further on to the ancient
Near East, many particulars of ancient Greek (or Roman, or medieval) ideas about signs
differ from those of cuneiform texts. The ubiquity of the importance of signs through-
out the cultural worlds of the ancient Near East and Mediterranean should not be mis-
taken for a thoroughgoing similarity or unity in how signs were understood from one
cultural milieu to another.8 What a sign was in the cuneiform context, even as it may
well have changed over the millennia-long span of the tradition, reflects nonetheless
within bounds an Assyro-Babylonian way of seeing the world where the portentous,
the anomalous, and the prodigious differed, however subtly, from the preternatural,
the monstrous, or miraculous in the worlds of later Hellenistic (Greek, Greco-Roman,
Greco-Egyptian, Indian) diviners, (Platonist or Christian) theologians or Late Antique
and medieval natural philosophers who were interested in these things.

In particular, once God and nature entered into the matrix of ideas that defined
the world, signs would begin to signify specifically in terms of that matrix, in which
sometimes there was an equivalence of God and nature, sometimes a tension between
Divine will and the laws of nature. Consider the statement of Augustine, where God’s
will works within nature for His purposes:

So, just as it was not impossible for God to set in being natures according to his
will, so it is afterwards not impossible for him to change those natures which
he has set in being, in whatever way he chooses. Hence the enormous crop of
marvels, which we call ‘monsters,’ ‘signs,’ ‘portents,’ or ‘prodigies’.9

The explanatory rhetoric of God and nature, or natures, is evidence of a new conceptual
foundation for prognostication through signs, and for science, differentiating it from
anything that developed in the Hellenic cultural realm, and certainly from that of the
ancient Near East.

In the most general of terms, signs are communicative. They point to things be-
yond themselves, conveying information in a multiplicity of ways, as is readily seen in
the fourteen meanings of ‘sign’ in the Oxford English Dictionary. Signs can be read and

7 Volk ǠǞǟǞ, ǠǞǞ–ǠǞǟ; my emphasis and ellipses.
8 Beerden (ǠǞǟǡ) looks at some of the differences in

how divinatory signs functioned in Mesopotamia,
Greece, and Rome, focusing on the textual

(cuneiform) or non-textual (Greek) nature of div-
ination, the institutional settings of the diviner.

9 Augustine, City of God, cited from Daston and Park
ǠǞǟǟ [ǟǧǧǦ], ǢǞ.
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understood, or variously interpreted. Signs can be linguistic and orthographic, and thus
can themselves constitute a form of writing, literally (cuneiform or any other script) or
figuratively (the liver, the stars and planets, or the Book of Nature). Like its English
counterpart, Akkadian ittu had a range of meaning from ‘mark, feature, characteristic’,
or even ‘diagram’, to ‘omen’, ‘password, signal, notice, acknowledgment’, and ‘written
proof’.10 Signs entered into the Western cultural-historical discourse on various levels,
including the linguistic, the theological, the philosophical, the divinatory and the med-
ical diagnostic. The last two in this enumeration played a central part in the discourse
of the Assyro-Babylonian scholars.

From these general statements, many distinctions are to be made among the forms,
the functions, as well as the responses to ominous signs in cuneiform texts. In addition
to the various kinds of signs, another important distinction can be made between signs
that were seen and/or reported and those that are found as entries in written compen-
dia, as in the series Enūma Anu Enlil,11 bārûtu,12 Šumma izbu, and others. The compendia
served as vehicles for organizing the signs together with their portents in complex lists
of antecedent-consequent statements, the conditional statements ‘If P, then Q’. The phe-
nomena are presented in a way that follows a fundamental method of interpretation,
more or less employed in each series. This method has been variously referred to as
a code,13 or a hermeneutic strategy.14

The relationship between the antecedent and consequent clauses allowed the de-
velopment of thinking about signs to encompass the observable, the possible, and the
conceivable, including, within the category of conceivable signs, those that cannot occur
in actuality. Actuality, as we might define it by what is permissible by nature, was not the
focus of the scholarly imagination working within the sources in question here. The so-
called impossible phenomena have been a puzzle to modern scholars for a long time. It
has been offered that the invention of these impossibilities was to fill out and complete
interpretive schemata. This is undoubtedly so, but nonetheless question-begging as to
the nature of the framework in which the interpretive schemata had validity. Perhaps
the reason for our puzzlement is that for too long we have failed to see how a notion of
the order of nature was fundamentally absent from and irrelevant to cuneiform divina-
tion. The omen series explored the world in a different way.

10 See CAD, Vol. ǥ, I/J, ǡǞǢb, s.v. ittu, meanings ǟ–Ǣ.
11 See Veldhuis ǠǞǟǞ, ǥǥ–ǧǟ.

12 On the difference between the omens from exta in
the series versus those in the ‘extispicy reports’, see
Heeßel ǠǞǟǠ, ǟǤ–ǡǣ, especially ǡǡ–ǡǣ.

13 Koch-Westenholz ǠǞǞǞ, ǟǡ; Brown ǠǞǞǞa, ǟǞǤ and
elsewhere throughout the text.

14 De Zorzi ǠǞǟǟ.
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Ǡ Norms and anomalies

What were the characteristics that rendered phenomena ominous? Though many de-
tails of the appearances of stars, moon, sun, planets, animals, birds, and insects, hu-
man appearance and behavior, as well as sounds and light phenomena, and things seen
in dreams, were ominous, not every single phenomenon was an omen. It is with re-
spect to some conventionally established system of reference (the code or hermeneutic
method) that something was interpretable as ominous, and even though many unreal
and purely imagined phenomena were included in the schematic compilations of omi-
nous phenomena, the system supported a notion of norms and a sense of normal and
abnormal. Georges Canguilhem noted the ambiguity of the term normal:

Sometimes it designates a fact that can be described through statistical sam-
pling; it refers to the mean of measurements made of a trait displayed by a
species and to the plurality of individuals displaying this trait – either in accor-
dance with the mean or with certain divergences considered insignificant. And
yet it also sometimes designates an ideal, a positive principle of evaluation, in
the sense of a prototype or a perfect form.15

Canguilhem saw these two meanings as linked, therein finding the ambiguity of the
term normal at the root of medical thinking about the pathological. In the realm of
cyclical physical phenomena, such as those of the sun, moon, planets, and ecliptical star
phases, the idea of a mean stemming from a measured standard is a related concept.
I submit that the conceptual link Canguilhem drew attention to for the life sciences is
also manifested in cuneiform sciences, from divination – which employed the sense of
an ideal16 – to astronomy, which began with the usage of the mean as an ideal, to a later
approach that focused on anomaly as defined in relation to a numerical mean.

Referring to the turn of the nineteenth century anatomist and physiologist (and
father of histology) Bachat, Canguilhem noted that

in his Recherches sur la vie et la mort (ǟǦǞǞ), Bichat locates the distinctive charac-
teristic of organisms in the instability of vital forces, in the irregularity of vital
phenomena – in contrast to the uniformity of physical phenomena.17

Further, he defined Bachat’s vitalism in his idea that “there is no pathological astronomy,
dynamics, or hydraulics, because physical properties never diverge from their ‘natural

15 Canguilhem ǠǞǞǦ [ǟǧǤǣ], ǟǠǠ. 16 David Brown first pinpointed the importance of
the ideal as a norm in Brown ǠǞǞǞa, ǟǟǡ–ǟǠǠ, and
ǟǠǣ–ǟǠǤ.

17 Canguilhem ǠǞǞǦ [ǟǧǤǣ], ǟǠǠ.
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type’.”18 The integrity of inanimate physical forms, therefore, did not permit the appear-
ance of ‘monstrosities’ among such phenomena as, say, the moon and planets. Canguil-
hem stressed the distinction between living organisms’ capacity for monstrosity and the
fact that “there is no machine monster”,19 saying, “the distinction between the normal
and the pathological holds for living beings alone.”20

It seems relevant in this context to observe that across the various omen text cate-
gories a distinction between anomalous features of physical phenomena and monstrous
features of births does not seem to be made. On the other hand, if we search for concep-
tions of the normal over a range of Akkadian divinatory texts, the same ambiguities as
Canguilhem described for the concept may be found. That is, normal can be gauged in
terms either of a ‘mean of measurements’ or an ideal, a ‘positive principle of evaluation’,
where that ideal is determined by the divine scheme of things.

The adjective kajamānu (SAG.UŠ) ‘normal’ is found in omens of the izbu and ālu
series, as well as in extispicy, as a description of, or a feature of a phenomenon. In addition
to the passages cited in CAD s.v. kajamānu usage a 1′ and 2′, a number of additional
passages from liver omens can be adduced, referring to the ‘Presence’ (manzāzu) of the
liver, meaning the feature of the liver associated with the presence of a deity. For example,
from early exemplars (Ǡnd millennium Middle Babylonian and Middle Assyrian):

If the normal Presence is there and a second one is placed on the left: The king
will resettle his abandoned territory […].21

And from another Middle Babylonian source:

If the normal Presence is there and a second one descends to the River of the
Pouch: The gods of your army will forsake it at its destination ([source] B adds:
and it will be routed).22

We might cite, additionally, the statement from an extispicy ritual, “[f]or his well-being
let there be a normal naplastu, let there be a normal manzāz ilim”, referring to the Presence
(of the god) on the liver.23

In light of Canguilhem’s reference to the ‘mean of measurements’ being a defining
basis for a conception of the ‘normal’, a passage from a late Uruk commentary may be

18 Canguilhem ǠǞǞǦ [ǟǧǤǣ], ǟǠǠ.
19 Canguilhem ǠǞǞǦ [ǟǧǤǣ], ǧǞ. From a completely

different point of view, cf. Zakiya Hanafi’s notion of
mechanical monsters, in Hanafi ǠǞǞǞ, ǥǤ–ǧǤ.

20 Canguilhem ǠǞǞǦ [ǟǧǤǣ], ǧǞ.
21 Koch-Westenholz ǠǞǞǞ, ǥǠ, text exemplars K 7, E 12,

A 11′, and B 1′; my omission (truncating Koch’s

parenthesis). See also elsewhere in the Appendix
to the Introduction.

22 Koch-Westenholz ǠǞǞǞ, ǧǢ, line 31, text exem-
plars A r 8′ and B r 15′. Bracketed insertion
[‘source’] added by the author.

23 Starr ǟǧǦǡ, ǡǠ, cited from Koch-Westenholz ǠǞǞǞ,
ǣǠ, note ǟǡǧ.
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noted that explains ‘the measurement of a normal Presence’ as of three fingers length.24

Ulla Koch cites another, Neo-Assyrian period, text that also describes norms in the fea-
tures of the liver in terms of sizes:

The Presence, the Path, the Pleasing Word, the Strength, the Palace Gate, the
Well-being, the Gall Bladder, the Defeat of the Enemy Army, the Throne Base,
the Finger, the Yoke and the Increment, the designs (subsections) of the Front
of the Pouch are three fingerbreadths each measured in the ‘large finger’, the
finger of the diviner or the asli-measure. Seven Weapons, five holes, three Fis-
sures you count as niphus. The Foot is one fingerbreadth long, the Fissure is half
a fingerbreadth long, the cleft is two fingerbreadths long, the šithu is three fin-
gerbreadths long, they affect the consecrated place. The circumference of the
liver is one cubit 6 fingers, 14 fingers its diameter(?).25

As Koch-Westenholz noted,

The liver may undergo morphological changes or changes due to diseases or
parasites. Also external influences can cause changes in the appearance of the
liver in the form of lesions and contusions, and different causes may have the
same symptoms on the liver. All this was obviously irrelevant to the Babyloni-
ans; only the visible symptoms were of interest. They did note the healthy and
normal appearance as a favorable sign.26

Despite the fact that the health and wholeness of the liver are regarded as of positive
divinatory value, the emphasis on deriving positive and negative values for features of
the exta overrides the value of the norm in a biological or anatomical sense. The evi-
dence shows that from the seventh century to the later Babylonian Period the system
was relatively unchanged, and did not reduce solely to a binary of normal and abnor-
mal, but employed many schemes for determining positive and/or negative outcomes
of a liver inspection. As Koch-Westenholz implied, the designation of what was normal
did not relate to an investigation of the physical causality of malformation. The inter-
pretive scheme did not function around the understanding of what makes for biological
normality, but rather what could be observed of regularity and irregularity from a visual
standpoint. Nor did it work in this way in the omens from the twenty-four tablet Izbu
series, which itself seems to be based, by definition, in the abnormal.27

24 CAD, Vol. Ǧ, K, ǡǥb, s.v. kajamānu, usage a 2′, TCL Ǥ
Ǥ ii ǡ.

25 Koch-Westenholz ǠǞǞǞ, ǢǞ: CT ǠǞ ǢǢ i ǣǠ–ǣǦ. Inter-
rogation mark copied from Koch.

26 Koch-Westenholz ǠǞǞǞ, ǢǞ–Ǣǟ.

27 Note that the D-stem adjective uzzubu, attested
only in lexical texts, according to the CAD entry
s.v. means ‘freakish, anomalous, monstrous’ (CAD,
Vol. ǠǞ, U/W, ǡǧǣb).
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The omen series Šumma Izbu ‘if a malformed birth’ seems to be the right place to
raise the question of whether the scribes thought in terms of ‘monsters’. To put the no-
tion of an izbu in the context of monsters requires reference to later history.28 In later
antiquity the understanding was that it was in the power of God to act within and against
nature to produce any conceivable, or inconceivable, phenomenon so as to communi-
cate with humankind. Indeed, by its etymology, a monster is something that ‘warns’
(Lat. monere) and is therefore a portent (Lat. monstrum).29 Isidore of Seville, for example,
said:

Portents, according to Varro, are those things that appear to be produced against
nature. But they are not against nature, since they happen by the will of God,
since nature is the will of the Creator of every created thing. For this reason,
pagans sometimes call God nature and sometimes, God. Therefore the portent
does not happen against nature, but against that which is known as nature [con-
tra quam est nota natura]. Portents and omens [ostenta], monsters and prodigies
are so named because they appear to portend, foretell [ostendere], show [mon-
strare] and predict future things.... For God wishes to signify the future through
faults in things that are born, as through dreams and oracles, by which he fore-
warns and signifies to peoples or individuals a misfortune to come.30

While Isidore’s reasoning may not be totally incompatible with what can be recon-
structed for Assyro-Babylonian thinking on the matter, his explanatory rhetoric is. On
the grounds of the attributions in prayers to the unlimited power of the gods as well
as from the omens themselves, the Assyro-Babylonian gods were viewed as producing
any conceivable phenomenon to signal yet another event, but the key element of ex-
planation, as Isidore related it, either that God acts against nature, or that God’s will
is tantamount to nature, departs from the framework within which omens would be
understood by the cuneiform scholars.

An izbu is clearly a birth, and in the omen series, izbus can be of animal (dog,
pig, bull, cow, sheep, goat, donkey or horse) and human births.31 Izbu is defined in
a bilingual lexical commentary as a “prematurely born fetus that has not completed its
months”.32 The description of human izbus may be found in the first Tablet of the series,
where a woman gives birth to newborns with various sorts of impairments (blindness,

28 For an outline of this history, see Hanafi ǠǞǞǞ.
29 Hanafi ǠǞǞǞ, ǟǠ–ǟǡ.
30 Isidor of Seville, Etymologiarum sive originum libri XX,

cited from Daston and Park ǠǞǟǟ [ǟǧǧǦ], ǣǞ. Ellipsis
added by Daston and Park.

31 CAD, Vol. ǥ, I/J, ǡǟǦa, s.v. izbu, usage b,
K. Ǡǡǟǣ: ǤǞff., and for the reference to a malformed
foal, see usage c 2′.

32 CAD, Vol. ǥ, I/J, ǡǟǦa, s.v. izbu, lexical section.
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Izbu I 60, and deafness, Izbu I 63)33 or deformities (mental, as in a lillu ‘fool’,34 physi-
cal, as in akû ‘deformed’,35 and various kinds of conjoined twins). Included among the
omens from human izbus are descriptions such as ‘if a woman gives birth to a lion/wolf/
dog/pig/bull/elephant/ass/ram/cat/snake/tortoise/bird’,36 as well as ‘… to membrane’,37

or ‘spittle’.38 There are also omens for multiple births,39 up to ‘eight or nine’, in the last
omen of Tablet I: “If a woman gives birth to eight or nine (children): A usurper will
attack; […] the land will become waste.”40

Overall, including the izbus from animal births, Nicla De Zorzi has shown how
the conception of deformity manifested itself in the categories of (ǟ) malformations
resembling animal features, (Ǡ) absence of body parts, (ǡ) deformed or incomplete body
parts, (Ǣ) misplacement of body parts, and (ǣ) presence of excess body parts.41 Some of
the izbus are vividly imagined, as for example,

If a woman gives birth, and (the child) is half a cubit tall, is bearded, can talk,
walks around, and his teeth have already come in, he is called ‘tigrilu’: Reign
of Nergal; a fierce attack; there will be a mighty person in the land; pestilence;
one street will be hostile to the other; one house will plunder the other.42

On the other hand, further evidence that izbus were not conceived of as monsters is that
breach birth,43 and twins, both identical and fraternal,44 are also found in the series,
neither of which would classify as ‘monsters’ today for their irregularity.

Erle Leichty noted in his introduction to the series’ editio princeps that

the ancient Mesopotamians had no interest in the scientific study of anomalies
to seek out their cause or cure. Their interest was centered on the apodosis, or
prediction, and not the anomaly itself […] His major concern with the anomaly
itself lay in description, and he classified anomalies only to enable himself to
find them within the series in order to ascertain their significance.45

At the time of writing (ǟǧǥǞ), in order to qualify as science, the study of birth anomaly
had to have explanatory and causal components as to why such malformations occurred
biologically, or from the point of view of the genetics of the developing embryo. As

33 Leichty ǟǧǥǞ, ǡǥ.
34 Note the late Izbu commentary to the term lillu,

cited in Frahm ǠǞǟǟ, ǠǞǧ: lúlil : sak-lu “lúlil (means)
imbecile”, BM ǥǥǦǞǦ rev. ǟ.

35 CAD, Vol. ǟ, A, Pt. ǟ, ǠǦǢa, s.v. akû B, and note that
the commentary text to Izbu explains akû as enšu
‘weak’, see CAD akû B lexical section.

36 Izbu I ǣ–Ǡǡ, see Leichty ǟǧǥǞ, ǡǠ–ǡǢ.
37 Izbu I ǠǦ and Ǡǧ, see Leichty ǟǧǥǞ, ǡǢ.
38 Izbu I ǥǟ, see Leichty ǟǧǥǞ, ǡǦ.

39 Izbu I Ǧǡ–ǟǡǟ, see Leichty ǟǧǥǞ, ǡǧ–ǢǢ.
40 Izbu I ǟǡǟ, see Leichty ǟǧǥǞ, ǢǢ. Ellipsis copied from

Leichty (damaged signs in the Akkadian).
41 De Zorzi ǠǞǟǟ, ǢǤ.
42 Izbu I ǦǠ, see Leichty ǟǧǥǞ, ǡǧ.
43 Izbu I Ǧǣ, see Leichty ǟǧǥǞ, ǡǧ.
44 Izbu I Ǧǡ (identical twin boys), ǦǤ (fraternal twins),

see Leichty ǟǧǥǞ, ǡǧ.
45 Leichty ǟǧǥǞ, ǟǤ.
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a consequence of this approach, Leichty emphasized the systematic nature of the omen
series’ compilation of so many malformed births, even though they lacked the notion of
physiological deformity having determinant causes. Despite his underlying sense of the
non-scientific character of the anomalous birth omens, Leichty rightly observed the im-
portance of the izbu’s description and in what sort of interpretation the entity was given,
rather in line with Harrison’s “science of interpretation which sought to expound the
meanings of words and things”. The cuneiform study of anomalies at the births of ani-
mals or humans was based on the same kinds of relationships between features of other
phenomena construed as positive or negative in accordance with an idea of the norm.
A binary interpretive system in which right has positive value and left negative, enabled
an anomaly on the left side of an ‘anomaly’ to be positive. Thus:

If a woman gives birth, and the right foot is twisted: That house will not prosper.

But:

If a woman gives birth, and the left foot is twisted: That house will prosper.46

De Zorzi discussed the binary oppositions of above and below, front and back, inside
and outside, large and small, right and left, male and female, dead and alive, as well as
normal and abnormal in the context of the Izbu series. She said:

The most common form of binary opposition in the protases is the opposi-
tion right/left. The corresponding apodoses fall into the opposing categories
of favorable/unfavorable predictions, thus combining themselves with the pro-
tases to form pairs of omens based on as structure of symmetric oppositions.
While this organizational principle is in evidence in all divinatory disciplines,
in Šumma Izbu a malformation on the right side (normally the pars familiaris) is
considered negative, a malformation on the left (normally the pars hostilis), posi-
tive. This is owed to the context of the observation: a malformation being eo ipso
a negative sign, the normal meaning of the opposition right (‘favorable’) / left
(‘unfavorable’) is inverted.47

The same interpretive reasoning is also found with respect to planetary phenomena in
which the binary pair bright/dim is applied to planets taken to represent benefic (Venus
and Jupiter) or malefic (Mars and Saturn) qualities. Brightness is usually a positive in-
dication, and dimness a negative. The brightness of a malefic planet, either Saturn or
Mars, is therefore judged to be negative, while its dimness is positive, and vice versa

46 Izbu, III Ǧǡ and ǦǢ, see Leichty ǟǧǥǞ, ǤǠ. 47 De Zorzi ǠǞǟǟ, ǣǠ–ǣǡ. This was also noted in Jeyes
ǟǧǧǟ/ǟǧǧǠ, ǡǣ.
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for the benefic planets Jupiter and Venus.48 It was no doubt in relation to the degree
of brightness that the planets came to represent benefic or malefic qualities in the first
place. In relation to the system of analyzing izbus, which were abnormal and unpropi-
tious in and of themselves, in much the same way as malefic planets were ‘bad’ and un-
propitious in and of themselves, the parallel in Late Babylonian texts concerning planets
shows that such associations had nothing to do with physical essences, but rather with
the value of the phenomenon as a portent, propitious or unpropitious. In the context
of the planets, nothing can be inferred as to the planets’ nature as physical phenomena
from the Babylonian standpoint. Far from representing Canguilhem’s “machine mon-
ster”, or Bichat’s “mechanical pathology”,49 malefic planets had ‘by definition’ negative
interpretive value within a divinatory schema.

Thus, the norm for an izbu, as for a malefic planet, was simply that untoward events
were signaled in each case. Their appearances could, however, signal propitious events
if an inversion of the binary values right/bright= good or left/dim= bad, or the like,
occurred. Consistent with Koch-Westenholz’s observation of what was of chief interest
to the diviner’s inspection of the liver, that is, in visual description rather than under-
lying causes of variation or deformation, the izbus were a focus of interest because they
represented a class of negatively evaluated forms.

As in extispicy, implicit in the izbu omens was the notion of a norm against which
izbus, as a class of phenomena, were judged abnormal, and in relation to which the
scholarly imagination spun its variations on normal. Indeed, izbu omens occasionally
use the term ‘normal’ to refer to a part of the newborn not construed as anomalous,
however attached it was to the anomaly. Thus:

If there are 2 izbus and they are normal (kajamānu) except the second one pro-
trudes from his (the first one’s) mouth: The king will be defeated, and his army
[…] his troops and his suburbs will be devastated.50

If an izbu has 2 heads, and the second one rides (above) the normal (SAG.UŠ)
one: Rebels will revolt against that prince.51

If an izbu’s eyes are normal (SAG.UŠ.MEŠ), but it has a third one on its forehead:
The prince [. . .]52

The malformed birth omens attest to the keen study of the morphological variation of
animal and human births alike, in which was embedded the idea of a norm. As Canguil-
hem also pointed out, morphological anomaly is not, by definition, pathology, which

48 Rochberg-Halton ǟǧǦǦ, ǡǟǧ–ǡǠǢ, and Rochberg
ǠǞǟǞ, ǟǡǣ–ǟǢǠ.

49 Canguilhem ǠǞǞǦ [ǟǧǤǣ], ǧǞ.
50 Izbu VI ǠǦ, see Leichty ǟǧǥǞ, Ǧǥ. My omission.

51 Izbu VIII ǣǞ, see Leichty ǟǧǥǞ, ǟǞǤ.
52 Izbu X 58′, see Leichty ǟǧǥǞ, ǟǠǤ. Text broken at

ellipsis.
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seems to have first been conceived by Aristotle in the Physics,53 where a monster is an er-
ror of nature. The separation of monsters from prodigies, according to A. W. Bates, did
not occur until the sixteenth century:

[N]either classical embryology nor its medieval interpretation required it [the
separation between monsters and prodigies] to be made. In medieval times
monsters were peccata naturae (slips of nature) and in common with other rare
or unusual happenings they were ‘unnatural’: to the medieval mind expressions
such as praeter ut in pluribus (outside that which occurs frequently) and praeter
naturam (beyond the range of nature) were interchangeable.54

Consistent with this remark, Daston and Park observed that in the Middle Ages “the
explanation of monsters by natural causes” could be found side by side with the idea
that monsters were divine portents, sent by God as a warning for sinners.55 In their
words, “[monsters] were suspensions of that [natural] order, signs of God’s wrath and
warnings of further punishment.”56

Daston and Park’s Wonders devoted a chapter to the phenomenon of monstrous birth
in the early modern period, presenting a case study of a monster born in Ravenna of the
early sixteenth century. This birth could almost have been an entry in the Izbu series,
as it

had a horn on its head […] and instead of arms it had two wings like a bat’s,
and at the height of the breasts it had a fio [Y-shaped mark] on one side and
a cross on the other, and lower down at the waist, two serpents, and was a
hermaphrodite,57 and on the right knee it had an eye […].58

Shortly after the creature’s birth, enemy troops came and sacked the city of its birth.
As the contemporary source remarked further:

53 Aristotle ǟǧǢǟ, Second Book, ch. Ǧ.
54 Bates ǠǞǞǣ, ǟǟǡ, parentheses in the original, brackets

added by the author.
55 As Daston and Park (ǠǞǟǟ [ǟǧǧǦ], ǟǦǟ–ǟǦǠ) said:

“The contemporary French chronicler Johannes
Multivallis related its [the Ravenna monster’s, FR]
deformities to particular moral failings: ‘The horn
[indicates] pride; the wings, mental frivolity and in-
constancy; the lack of arms, a lack of good works;
[…] the eye on the knee, a mental orientation solely
toward earthly things; the double sex, sodomy. And
on account of these vices, Italy is shattered by the

sufferings of war, which the king of France has not
accomplished by his own power, but only as the
scourge of God’.” My ellipsis; the second bracketed
insertion [‘indicates’] was added by Daston and
Park, all other bracketed insertions were added by
the author.

56 Daston and Park ǠǞǟǟ [ǟǧǧǦ], ǣǟ (my insertions).
57 See Leichty ǟǧǥǞ, Ǧ on hermaphroditic izbus.
58 Luca Landucci, A Florentine Diary from ǟǢǣǞ to ǟǣǟǤ,

cited after Daston and Park ǠǞǟǟ [ǟǧǧǦ], ǟǥǥ. My
ellipses; the bracketed insertion [‘Y-shaped mark’]
was added by Daston and Park.
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It seems as if some great misfortune always befalls the city where such things
are born; the same thing happened at Volterra, which was sacked a short time
after a similar monster had been born there.59

The similarity between the ancient Near East and Western Europe in prognosticating
from monstrous births could be due ultimately to the Greco-Roman cultural bridgehead
that enabled material of Near Eastern origins to penetrate Western Europe.60 The idea
that it was God’s work within, or against, nature that provided an explanation for mon-
sters, however, is altogether different from what was conceptually available in cuneiform
texts.61

During the Neo-Assyrian period, the untoward consequences of izbus, as well as
those of many other signs, both for those given by the gods in the heavens or on earth,
as well as signs from extispicy,62 were dealt with by means of rituals called namburbi, per-
formed by an āšipu or mašmašu.63 As is the case in many technical terms in the Akkadian
scholarly corpus, namburbû is a loan from Sumerian NAM.BÚR.BI, meaning ‘its BÚR’,
with NAM acting to nominalize the verb BÚR. The Akkadian equivalent for Sumerian
BÚR is pašāru ‘to loosen’, or ‘undo’, ‘release’, even ‘exorcise’.64 These rituals were utilized
against the evil portended by ominous signs, as well as other potential dangers (e.g.,
temple offices not carried out properly, headache or disease among the army and horses
going on campaign, the effects of sorcery and witchcraft, the evil of fungus).

In his full-length treatment of the namburbi ritual,65 Richard Caplice discussed the
semantics of pašāru in order to specify the purpose of the ritual. He pointed out that
among the fundamental senses of this verb is that of a restoration to order, in contexts
where the word is used to mean ‘untangle’ or ‘unravel’, i.e., to a state of right order.
He cited a passage from Šurpu which states that the evil of sorcery may be unraveled
by “the symbolic and magically efficacious act of unraveling a tangle of matted mate-
rial”.66 He concluded that it is this sense that applies in the namburbi ritual against omi-
nous signs. What is being untangled, or set to rights, is, as Caplice argued, the evil (HUL/
lumnu) portended by signs, not the sign itself. It is clear in any number of namburbis that
this is the case, for example the namburbi against the evil portended by certain birds.67

59 Daston and Park ǠǞǟǟ [ǟǧǧǦ], ǟǥǥ.
60 See Jacobs ǠǞǟǞ, ǡǟǥ–ǡǡǧ.
61 Similarly, in the Treatise on Monsters of Fortunio

Liceti of the early modern period, the possible gen-
eration of monsters is understood as “supernatural,
infranatural, and natural productions”. Although he
speaks only about these natural causes, Liceti does
not fail to mention that “the sole, efficient cause
is Almighty God, that is, motive Intelligence and

the Heavens”. (Cited after Hanafi ǠǞǞǞ, ǡǣ; italics by
Hanafi.)

62 For two kinds of apotropaic rituals for extispicy, see
Koch ǠǞǟǟ, ǢǣǤ–ǢǤǣ, and Koch ǠǞǟǞ, ǢǤ.

63 See Maul ǟǧǧǢ.
64 See CAD, Vol. ǟǠ, P, ǠǡǤb, s.v. pašāru.
65 Caplice ǟǧǤǡ.
66 Caplice ǟǧǤǡ, Ǡǡ.
67 Caplice ǟǧǤǥ, Texts No. Ǡǣ, ǠǤ, Ǡǥ, and ǠǦ, and re-

published in Maul ǟǧǧǢ, ǠǡǢ–ǠǢǦ, ǠǤǦ–ǠǤǧ, and
ǠǣǤ–ǠǤǦ.
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Expressions used in the sources are unequivocal in saying their purpose is to ‘make the
evil pass by’ – a phrase used as well in the context of lunar eclipses portending unto-
ward events – or ‘so that the evil not approach (the man)’. Indeed, the undoing of evil is
the goal. However, as in the passage quoted at length below, the izbu itself will also be
destroyed in the process of undoing its evil. Similarly in reference to a lunar eclipse, a
namburbi is performed against its evil portent, but the eclipse itself is also in effect un-
done, as the lunar disk becomes bright again. In each case, the purpose of ritual action
is to restore the order of things threatened by the appearance of a bad sign.68

The following is a series of namburbi rituals for dispelling the evil of an izbu, col-
lected on one tablet. To dispel the portended evil the supplicant went symbolically be-
fore the divine judge, the sun-god Šamǎs, and by means of plants, the river, or strings of
beads, cast it out.

If in a man’s house there was an izbu, whether of cattle, or of sheep, or an ox,
o[r a goat], or a horse, or a dog, or a p[ig], or a human being, in order to avert
that evil, [that it may not approach] the man and his house:

You go to the river and construct a reed hut. [You scatter] garden plants. You
set up a reed-altar. Upon the reed-altar you pour out seven food-offerings, beer,
dates, (and) šasqû-flour. [You set out] a censer of juniper. You fill three lah

˘
annu-

vessels with fine beer, and [you set out] [. . .]-bread, DÌM-bread, ‘ear-shaped’
bread, one grain of silver, (and) one grain of go[ld]. You place a gold ZU on the
head of that izbu. You string a gold breast-plate on red thread. You bind it on
his breast. You cast that izbu upon the garden plants. You have that man kneel,
and recite thus:

Incantation: Šamǎs, judge of heaven and earth, lord of justice and equity, who
rule over the upper and lower regions, Šamǎs, it is in your hands to bring the
dead to life, to release the captive. Šamǎs, I have approached you; Šamǎs, I have
sought you; Šamǎs, I have turned to you. Avert from me the evil of this izbu!
May it not affect me! May its evil be far from my person, that I may daily bless
you, that those who look on me may forever [sing] your praise!

You have him recite [this] incantation three times. The man’s house [will (then)
be at peace] [. . .], and before the river [you recite] as follows:

[Incantation: y]ou, River, are the creator of ev[erything]. [. . .]-sun, the son of
Zerūti, whose [personal god is Nabû, whose personal goddess] is Tǎsmētu, who
[is beset by] an evil izbu, is therefore frightened (and) terrified. Avert [from him]

68 Caplice ǟǧǤǥ, ǠǤ. See also Caplice ǟǧǥǟ, ǟǤǤ–ǟǤǦ,
Text No. Ǥǣ, republished in Maul ǟǧǧǢ, ǢǣǦ–ǢǤǞ.
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the evil of this izbu! May the evil not approach (him), may it not draw near, [may
it not press upon (him)!] May that evil go out from his person, that he may daily
bless you (and) those who look on [him] may forever sing your praise! By the
command of Ea and Asalluh

˘
i, remove that evil! May your banks not release it!

Take it down to your depths!

Extract that evil! Give (him) happiness (and) health! You recite this three times,
and cleanse the man with water. You throw tamarisk, Dilbat-plant, qān šalali,
a date-palm shoot, (and) the izbu, together with its provisions and its gifts, into
the river, and you undo the offering-arrangement and prostrate yourself. That
man goes to his house.

[You string] carnelian, lapis-lazuli, serpentine, pappardillu-stone, pappardildillu-
stone, bright obsidian, h

˘
ilibû-stone, […] (and) breccia on a necklace. You place

it around his neck for seven days [. . .] the evil of that izbu will be dis[sipated].69

The final point to consider is whether izbus were understood as an expression of divine
wrath, in the manner argued in the context of later European monstrous births. This is
an interpretation deeply rooted in Assyriological literature, going back, according to
Caplice, to Julian Morgenstern in the early twentieth century.70 We find it again in Ste-
fan Maul,71 and in Amar Annus’ introduction to the volume on divination, where he
said, “according to Namburbis, the person to whom the evil omen was announced had
to placate the anger of the gods that had sent it to him and effect the gods’ revision
of their decision”, thereby achieving “a correction of his fate which the gods had de-
creed”.72 In the namburbi rituals for the izbu quoted above, the person in whose house
an izbu appeared presents himself before the sun-god and says the incantations that ask
the god to rid him of the evil omen and prevent that evil from approaching. The rit-
ual does not involve appeasement of the gods either on the part of the supplicant or
the āšipu in charge of the ritual performance, but consisted of various symbolic acts of
casting off (onto the plants, into the river) and cleansing, as well as the request through
incantation for restitution by the divine judge, Šamǎs. Šamǎs is not to be placated, but
to receive the plea and make a decision. Just as the izbu omens’ interpretive structures
had to do with norms and abnormality, the ritual against an izbu’s portended evil acted

69 See Caplice ǟǧǤǣ, ǟǠǣ–ǟǡǞ, Text No. ǟǞ, repub-
lished in Maul ǟǧǧǢ, ǡǡǤ–ǡǢǡ. Note that the lines
of the tablet have been run together for space
saving. In general, words or letters inside square
brackets mean that the broken tablet has been re-
stored, while parentheses mark translator’s glosses.
Parentheses, brackets, and ellipses were inserted by

Caplice, except the first ellipsis of the last paragraph
(where Caplice has another restored portion inside
brackets).

70 Caplice ǟǧǤǡ, ǠǦ–Ǡǧ and note ǟ, where he cites Mor-
genstern ǟǧǞǣ.

71 Maul ǟǧǧǢ, ǟǞ.
72 Annus ǠǞǟǞ, ǥ.
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to remove or keep evil away and re-establish the norm. As expressed in the namburbi
text, the norm, or the normal, was taken as happiness and health.

The question of whether an izbu signifies divine anger is still not resolved, however,
as the namburbi for the evil of an eclipse, mentioned above, offers another perspective.
A lunar eclipse was the manifestation of a disturbance of the moon-god, often expressed
as that god’s being in mourning or emotional distress (lumun libbi, literally ‘trouble of
the heart’). In some contexts lumun libbi means ‘anger’.73 The afflicted person is required
to set up an altar to the moon-god, Sin, present offerings and, prostrated, recite a prayer
three times before the moon/moon-god, as the celestial body and the god are, for the
purpose of the ritual, one and the same:

May the great gods make you bright! May your heart be at rest! May Nannar
of the heavenly gods, Sin the exorcist, look (hither)! May the evil of eclipse not
approach me or my house, may it not come near or be close by, may it not affect
me, that I may sing your praises and those who see me may forever sing your
praises!74

The text adds for the āšipu:

You have him recite this, and you undo the offering arrangement. You perform
the [ritual] for the evil of signs and portents, and the evil of eclipse will not
approach him.75

The exhortation in the prayer for the quieting of the moon-god’s heart is a clear reference
to lumun libbi.76 Whether the connotation is of the moon’s grief, or his anger, is not clear,
even though the phrase is normally understood in astrological contexts to mean ‘grief’.
In any event the eclipse was construed as a sign of the moon-god’s state of mind, which
had to be restored to its normal state of brightness (and happiness) by an offering and the
recitation of the prayer. This strikes a contrast to the izbu. As the izbu was not referred to
as the result of divine anger, the ritual does nothing to appease a god, but rather it brings
the matter before the sun-god as judge to restore things to normal.77

73 CAD, Vol. ǧ, L, ǠǣǞb, s.v. lumun libbi, meaning Ǡ.
74 Caplice ǟǧǥǟ, ǟǤǦ. Parenthesis by Caplice.
75 Caplice ǟǧǥǟ, ǟǤǦ. Brackets by Caplice.
76 Interestingly, in the section preceding the prayer

(line 5′), a reference is made to the condition of the
afflicted one’s heart.

77 Cf. the Sumerian incantation included in an-
other namburbi: “Incantation: The sign that is evil
shall not approach the man! At the word of Utu
[= Šamǎs, FR], baillif of the gods, who defeats the

sign that is evil for man, (who defeats) anything
(evil) that approaches, – though the man (lit. seed
of man) himself be unaware of it [alternatively:
may not be aware of it, FR] – it shall not approach
him to his detriment! Like water – water poured
into the canal – his punishment shall not approach
him! His evil shall not hover about him! (These are)
the words of Enki and Asalluh

˘
i.” See Caplice ǟǧǤǥ,

Ǡǥǡ–ǠǥǢ, Text Ǡǣ: 14′–19′, and translation on p. ǠǥǤ,
quoted here (parentheses by Caplice).
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The foregoing discussion aimed to show that izbus, premature or malformed births,
were not conceived of as monsters, and the word izbu does not signify a ‘monster’, except
in the classical sense of a portent. The evil portended by an izbu does not seem to have
been conceived of as a result of divine wrath, or as punishment for human sin. They
were not errors of nature, or deviations of nature from its own laws, but only portents
in the same way as were other ominous signs in cuneiform, i.e., as part of a language
of divine communication in the exta, in the heavens, and in other domains, for indi-
cating both favorable and unfavorable consequences of representations of or deviations
from the norm.

Variation with respect to a conceived norm made signs ominous, but not all omens
in the cuneiform world were anomalies. Phenomena that fell within norms were also
portentous, and were deemed propitious. Again, where Canguilhem placed the con-
ception of the monster, or the monstrous, in the context of living phenomena, the
cuneiform material leveled the playing field for all ominous phenomena, not reserving
‘monstrosity’ for the living, indeed, not expressing the notion at all.

ǡ Celestial signs and astral phenomena: regularity and anomaly

Norms for cyclical astral phenomena were defined differently from those in the biolog-
ical realm, where the definition of health, or ‘normal’, permits a good deal of variability
before one begins to speak of a defect or an anomaly. Evidence of this kind of standard
of measure by the healthy appearance of the liver or other organs is found in extispicy
omens. In the izbu omens, the standard itself was anomalous, as just discussed.

Periodic phenomena in the heavens, on the other hand, are amenable to count-
ing, or other arithmetical methods by which to construe regularity. As a result the term
meaning ‘normal’ in astral omens is minītu, from the verb manû ‘to count’. Thus, the day
when sun and moon were in opposition on an anomalous day of the lunar month,
was expressed as ina la minâtišunu, literally, ‘not according to their (calculated) norm’,
or a lunar eclipse might occur ina la minâtišu ‘not according to his (the moon’s) (cal-
culated) norm’.78 A similar expression is constructed with the word simanu ‘time’, i.e.,
‘not according to its time’, where the sense of a celestial body’s appearance anomalously
is conveyed.79

Such references relate to Canguilhem’s first notion of normal as the measured or
calculated mathematical mean. But the function of the norm in the various cuneiform
divinatory contexts, astral, extispicy, and izbu omens alike, was to differentiate the mean-
ing of those signs by deviations from ‘normal’. Where Canguilhem focused on the de-

78 CAD, Vol. ǟǞ, M, Pt. Ǡ, Ǧǥa, s.v. minītu, meaning ǟd. 79 CAD, Vol. ǟǣ, S, ǠǤǧb, s.v. simanu, usage c.
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velopment of ideas of pathology in life forms, he noted the problem with such a notion
in physics and mechanics. While celestial divination was oriented to phenomena that
would also be of interest to later physics and mechanics, the interest in them was as
signs, in the same framework as the liver and the izbu. From the point of view of divina-
tory knowledge, there was a unity between the signs in heaven and the signs on earth;
all belonged to the category of signs. The other aspect of Canguilhem’s investigation
into the normal were his remarks about the ideal, which, as cited before, were described
as “a positive principle of evaluation, in the sense of a prototype or a perfect form”.
David Brown has explicated this idea in early astronomical and celestial divinatory texts
concerning cyclical astronomical phenomena and the arithmetical schemes devised for
reckoning with them in a divinatory context.80

Already from the earliest periods an interrelated group of ideal units of time reck-
oning was devised for accounting purposes, and because those units came to undergird
early Babylonian astronomy as well as the tradition of Enūma Anu Enlil omens, they
would remain in the cuneiform scholastic tradition for two millennia.81 This group of
ideal units focused on the ǡǤǞ-day year of 12 ǡǞ-day months. Of the local Sumerian cal-
endars in the Ur III period, where real month lengths varied, calendar months in the city
of Nippur became standard and were later taken over as the month names of the ideal
calendar (12 ǡǞ-day months= 1 ideal year) common to the scholarly traditions of the as-
tral sciences, both astrology (celestial and natal divination) and astronomy (MUL.APIN,
Astrolabes), prior to ca. 500 BCE, and even later in some cases.

Already in the Old Babylonian Period, the variation in length of daylight was un-
derstood as deviations from the ideal dates of the equinoxes. The earliest evidence for the
quantitative model for daylight length is found in an Old Babylonian text (BM 17175+).82

In four sections, one for each schematic season, the text gives the model as follows:

[On the ǟǣth of Addaru, 3 (minas, or 3,0 UŠ) are a wa]tch of the day, 3 (minas,
or 3,0 UŠ) are a watch of night; [Day and night] are equal. [From the ǟǣth of
Addaru to ] the ǟǣth of Simanu is 3 months. [On the ǟǣth of Simanu, the night]
transfers 1 (mina, or 1,0 UŠ) of the watch to the day. [.... 4 (minas, or 4,0 UŠ) is
the wa]tch of the day, 2 (minas, or 2,0 UŠ) is the watch of the night.83

This model of the ideal year assigned the equinoxes and solstices to the midpoints, or
ǟǣth day, of months XII, III, VI, and IX. For each schematic season, or quadrant in
the ideal year, the length of daylight shifted by 1 unit. Therefore, from vernal equinox

80 Brown ǠǞǞǞa, ǟǟǡ–ǟǠǠ for his description of ‘period
schemes’, and ǟǢǤ–ǟǣǣ for their impact on celestial
divination.

81 Englund ǟǧǦǦ; Brown ǠǞǞǞb; Brack-Bernsen ǠǞǞǥ;
Britton ǠǞǞǥ, ǟǟǥ–ǟǟǧ. For month lengths and the

Babylonian calendar, see Britton ǠǞǞǥ and Steele
ǠǞǞǥ, ǟǡǡ–ǟǢǦ.

82 Hunger and Pingree ǟǧǦǧ, ǟǤǡ–ǟǤǢ.
83 Text enclosed in square brackets is restored. Text in

parentheses is a translator’s gloss.
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to summer solstice, the length of day increased by ‘1’, from summer solstice to autumnal
equinox, daylight decreased by ‘1’, and so on, producing a model for the change in the
length of daylight in which the ratio of longest to shortest day length was 2 : 1. Thus:
3 (VE)+ 1 = 4 (SS)− 1 = 3 (AE)− 1 = 2 (WS)+ 1 = 3 (VE). This scheme is not prac-
tical for the geographical latitudes of Mesopotamia, but it is the simplest, indeed most
elegant, way to model the experience of increasing and decreasing durations of daylight
around two extremes (summer and winter solstices), provided the model is contructed
on the ideal year. The mean value was expressed in sexagesimal notation as the number
3, i.e., 180 (3× 60), and represented one-half of the circle of the day (360 degrees) when
daylight and night were of equal length (180 degrees).

Another group of astronomical texts, with exemplars from the Middle Babylonian
and Middle Assyrian periods, and now called ‘astrolabes’, arranged in circular or list form
three groups of heliacally rising stars month by month together with numerical values
for the length of day in those months. This group of texts provided the full complement
of numerical values that made up the model attested in the Old Babylonian Example
cited above. In Tab. ǟ, ‘C’ designates the value for length of daylight, taken as constant
for the duration of the month.

Again it is clear that the mean value of the table is 3 (= 3,0), representing the length
of daylight (or night) at the equinoxes.

From the standard Assyro-Babylonian astronomical compendium known as MUL.
APIN, preserved from exemplars dating to the ǥth century BCE, statements concerning
length of daylight show that the Old Babylonian model for variation in daylight (Tab. ǟ)
was still being transmitted. The text says, for example:

ina Nisanni UD.15 3 mana mas
˙
s
˙
arti mū̌si 12 UŠ napāh

˘
u ša Sin

On the ǟǣth of Nisannu (=Month I) a nighttime watch is 3 minas; 12 UŠ the
(daily retardation of the) rising of the moon.84

This gives the same value for daylight length at the vernal equinox, but it occurs in the
first month Nisannu, rather than the twelfth month Addaru. The remaining cardinal
points of the year were also shifted up one month, from XII to I for the vernal equinox,
as just seen, from III to IV for the summer solstice, and so on. This shift in the calendri-
cal reckoning of the cardinal points did not alter the underlying schematic model for
daylight length variation.

Another section of MUL.APIN clarified the scheme for an entire ideal year.85 The
section not only spelled out the lengths of night for each ideal month but also in-
cluded the value for the visibilities of the moon, whether from rising or before setting.

84 See Hunger and Pingree ǟǧǦǧ, ǟǞǠ: Tablet II ii ǢǢ.
My parentheses.

85 MUL.APIN II ii Ǣǡ–iii ǟǠ.
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Month C (in mana) C in UŠ = Hours Cardinal Points

XII 3;0 3 = 12 hr Vernal Equinox

I 3;20 3,20 = 13 hr 20′

II 3;40 3,40 = 14 hr 40′

III 4;0 4 = 16 hr Summer Solstice

IV 3;40 3,40 = 14 hr 40′

V 3;20 3,20 = 13 hr 20′

VI 3;0 3 = 12 hr Autumnal Equinox

VII 2;40 2,40 = 10 hr 40′

VIII 2;20 2,20 = 9 hr 20′

IX 2;0 2 = 8 hr Winter Solstice

X 2;20 2,20 = 9 hr 20′

XI 2;40 2,40 = 10 hr 40′

Tab. ǟ Astrolabes’ scheme for variation in daylight length. (The relation between the measures for C in the
second and third column is 1 mana= 1,0 UŠ. Mana was a unit of weight, for measuring water into the water
clock. 1 UŠ= 4 time degrees.)

MUL.APIN’s interest in the night lengths and visibilities of the moon is followed by
a short passage explaining the calculations for the duration of lunar visibility using a ‘dif-
ference’ coefficient (nappaltu), e.g.,

40 NINDA nappalti ūmi u mū̌si ana 4 tanǎšsīma 2,40 nappalti tāmarti tammar

multiply 40 NINDA, the ‘difference’ of daylight and night, by 4 and you will
find 2,40, the ‘difference’ of the visibility of the moon.86

The same numerical values for daylight lengths according to the model of MUL.APIN
and the Astrolabes also underlie the calculation of the duration of visibility of the moon
at night, found in Tablet 14 of the omen series Enūma Anu Enlil.87 The duration of lu-
nar visibility was of course related to the length of night, and the value given as the
IGI.DU8.A= tāmartu ‘visibility’ of the moon is figured as 1/15th of the length of night.
For example, in Month I day 1, day= 3 and 1/6 and night= 2 and 5/6. On this day
the IGI.DU8.A of the moon is given as 11;20, the result of dividing the length of night

86 MUL.APIN II iii ǟǣ (slightly modified translation
from Hunger and Pingree ǟǧǦǧ, ǟǞǦ).

87 Al-Rawi and George ǟǧǧǟ/ǟǧǧǠ, ǣǠ–ǥǡ.
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by 15. For an equinoctial day, e.g., Month I, day 15, the IGI.DU8. A of the moon is given
as 12. Night length at the equinox= 3,0 (moon rises at sunset and rises at sunrise and
is visible the entire night, for 180◦). The value for IGI.DU8.A is 12, which is 1/15 of 3,0
(= 180◦). The length of night was always the complement to the length of day, where
on any given night of the schematic year, day+night= 12 bēru= 24 hours= 360 UŠ
(360 degrees of time= 24 hours). Values were given in monthly intervals, but a state-
ment from MUL.APIN confirms that these values could also be interpolated on the
basis of semi-monthly values for the length of the day: “The Sun which rose towards the
North with the head of the Lion turns and keeps moving down towards the South as a
rate of 40 NINDA per day.”88 40 NINDA per day is the result of the regular increments
or decrements of 10 units each ½ month, i.e., in ǟǣ-day periods. Further interpolations
could be made by dividing by 30 (the number of days in a schematic month) the semi-
monthly differences between values for the daily retardation of the moon throughout
the schematic year, tabulated in Enūma Anu Enlil Tablet 14.89 These quantitative descrip-
tions were results of modeling, not measuring, the variation in length of daylight and
the underlying structure was the ideal year, 12 ǡǞ-day months or 360 days.

It seems to me that the numerical mean value in this ideal scheme, the value 3 (3,0=
180), as the representation of one-half of the circle of the day, was not simply a derived
mean value from the schemes for daylight length and duration of lunar visibility, but
played a determining role in the construction of those schemes.

David Brown drew attention to the role of ideal schemes,90 showing as well that the
numerical value assigned to the ideal, as construed in accordance with those schemes,
and deviations from the ideal, was the basis for interpreting propitious and unpropi-
tious signs. This shows the consistency of the scholars’ approach among the various
domains of signs, and how the notion of a norm was instrumental to the entire system.
I would further concur with Brown’s insight that the categories by which the heavenly
phenomenal world was structured in celestial omens, were, in his words, “devised in
order to make the sky above interpretable”, and that “it [the phenomenal world] was
categorised in this manner in order that it could be encoded with signs”.91

Brown’s insight can be applied more widely within cuneiform knowledge corpora.
As noted above, phenomena of the liver and exta that deviated from normal were studied
as ominous signs. Those appearances that fell within the range of normal were also
counted as omens, signaling generally propitious events. As shown above, even some
izbu omens had elements described as ‘normal’.

88 MUL.APIN II i ǟǟ–ǟǠ (translation from Hunger and
Pingree ǟǧǦǧ, ǥǠ–ǥǡ).

89 Al-Rawi and George ǟǧǧǟ/ǟǧǧǠ, ǣǦ.

90 See note ǦǞ above.
91 Brown ǠǞǞǞa, ǟǣǡ. My insertion, emphasis by

Brown.
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The foregoing has sought to explore the way in which norms and anomaly were
important components of cuneiform scribal thinking about the world of phenomena.
Given the necessity of making meaning from signs, these ordering principles aided
omen divination in the interpretation of the perceived, experienced, or imagined phe-
nomena of the scribes’ spheres of interest. While central to omen divination, the use
of ideals and anomaly was not limited to the divinatory enterprise. It is also found in
early Babylonian astronomical texts wherein the approach is entirely consistent with
that of divination. It seems significant that the establishment of norms against which
to define anomaly was employed in the understanding and interpretation of both phys-
ical and non-physical phenomena, both terrestrial and celestial. Perhaps, however, in
the ‘empire of celestial knowledge’ the further development of this principle would see
its most significant gains.
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