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Summary

A large number of the astronomical observations in the Babylonian diaries are occurrences
of close conjunctions of moving objects, such as the Moon or planets with bright stars, in
the vicinity of the ecliptic. In ǟǧǧǣ, Graßhoff proposed the hypothesis that the observations
fit best when one assumes that the Babylonians used an ecliptical coordinate system. In the
following we present a test that excludes an equatorial coordinate system as an alternative
system of measurement.
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Ein Großteil der astronomischen Beobachtungen in den Babylonischen Tagebüchern han-
delt von Konjunktionsereignissen sich bewegender Objekte, wie dem Mond oder Planeten
mit hellen Sternen in der Nähe der Ekliptik. ǟǧǧǣ argumentierte Graßhoff, dass die Beob-
achtungen am meisten Sinn ergäben, wenn man davon ausginge, dass die Babylonier ein
ekliptikales Koordinatensystem nutzten. Im Folgenden stellen wir einen Test vor, der ein
äquatoriales Koordinatensystem als alternatives Messsystem ausschließt.
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ǟ Introduction

In ǟǧǦǥ Otto Neugebauer suggested that Gerd Graßhoff reanalyze what seemed to be
observational reports in the Babylonian astronomical diaries, which were being pre-
pared for publication by Hermann Hunger on the basis of the notes of the late Abraham
Sachs. Hunger kindly gave Graßhoff access to his text files so that he could process the
astronomical data. Thus, Graßhoff undertook a comparative analysis of the calculated
positions of the Moon of the first two volumes of the Astronomical Diaries using the just
published algorithms of Chapront-Touzé1. Until then, no one had carried out a system-
atic interpretation of the observational reports, which had fueled much debate between
Neugebauer and Noel Swerdlow at Princeton, and which had led them to question
whether the Astronomical Diaries had anything in common with the ACT. During one
particular summer of intense discussion on the difficulties of interpreting the reports,
they had even argued about whether the Babylonian observers had used any modern
astronomical coordinate system at all. In ǟǧǧǞ the early results showed that the obser-
vations of planetary configurations had been recorded using the ecliptical coordinate
system. Swerdlow promptly took up the challenge and investigated the implications for
Babylonian planetary theory.2 The results concerning the Babylonian coordinate system
were presented at a Dibner Institute workshop at the MIT in Boston in ǟǧǧǣ. As statis-
tical tests could not distinguish clearly between ecliptical and equatorial coordinates,
the late John Britton suggested that future researchers look for properties in the data
that would yield an experimentum crucis between both coordinate systems. This paper is
a response to his suggestion.

The three volumes of late Babylonian texts, edited by Abraham Sachs and Hermann
Hunger, and published by ǟǧǧǤ,3 contain the observations of more than 5 000 planetary
and lunar configurations. Observations of this type record close approximations of the
Moon or planets with bright stars in the vicinity of the ecliptic. According to Graßhoff,
the general form of the observed configurations can be tabulated as shown in Tab. ǟ.

A number of the observational reports mention more than one topographical rela-
tionship and their quantity. These expressions have been translated as ‘low to the south’,
‘high to the north’, ‘back to the west’, and ‘passed to the east’, followed by another quan-
titative value. A schematic form of these expressions is:

at t: O1 stands [‘in front of’ / ‘behind’] O2 with D, low to the south with N.

‘Low to the south’ and ‘high to the north’ measures ecliptical differences. The first object
stands in the north if its difference of latitudes with the second object is positive.

1 Chapront-Touzé and Chapront ǟǧǧǟ.
2 Swerdlow ǟǧǧǦ.

3 Sachs and Hunger ǟǧǦǦ–ǟǧǧǤ.
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standard back to the west passed to the east balanced further specification

ecliptical difference of latitude, β1 > β2, D1 = β1 − β2

above small difference
of longitude

difference of
longitudeλ1 < λ2,D2 = λ2 − λ1

difference of
longitudeλ1 > λ2,D2 = λ1 − λ2

very small
difference of
longitude

—

ecliptical difference of latitude, β1 < β2, D1 = β2 − β1

below small difference
of longitude

difference of
longitudeλ1 < λ2,D2 = λ2 − λ1

difference of
longitudeλ1 > λ2,D2 = λ1 − λ2

very small
difference of
longitude

—

standard high to the north low to the south balanced further specification

ecliptical difference of longitude, λ1 < λ2, D1 = λ2 − λ1

in front of undetermined
difference of
latitude

difference of
latitudeβ1 > β2,D2 = β1 − β2

difference of
latitudeβ1 < β2D2 = β2 − β1

very small
difference of
longitude

occasionally with
planets:
to the west

ecliptical difference of longitude, λ1 > λ2, D1 = λ1 − λ2

behind undetermined
difference of
latitude

difference of
latitudeβ1 > β2,D2 = β1 − β2

difference of
latitudeβ1 < β2,D2 = β2 − β1

very small differ-
ence of latitude

occasionally with
planets:
to the east

Tab. ǟ Summary of the meaning of the relational expressions (rows) and the additional remarks (columns) used;
for configurations between celestial bodies O1 und O2 with ecliptical coordinates λ1, β1 and λ2, β2. The measure-
ment is denoted as D1, accompanied by D2 in the case of dual coordinates. Cf. Graßhoff ǟǧǧǧ.
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Fig. ǟ Two hypothetical objects
displayed in a distance relation-
ship using an abstract coordinate
system.

Ǡ Babylonian astronomical observations of planetary and lunar
configurations

Ǡ.ǟ Measuring coordinate differences

Let us begin with looking at an abstract generalization of the observation of a config-
uration of two objects with dual coordinates in a measuring plane (x,y) as shown in
Fig. ǟ. The position of the second (slower or fixed) object is marked in the center of
the observation window by a cross. The positions of eight other objects are marked by
bullet points, with their respective coordinate differences. In standard Babylonian for-
mulation they would be mentioned as the first objects. Their position follows a square
of a length of one degree around the cross in the center. The standard form of a config-
uration statement is:

‘At date D, the second object (e.g. the Moon) is situated at distance A below
object 2 (e.g. the star Beta Tauri) and at distance B towards the east.’

As in the aforementioned example, we here have the simulation of a coordinate dif-
ference (A, B) of two hypothetical objects defined by their distance. The coordinates
themselves refer to a coordinate system, and the coordinate differences are indicated
on the measuring plane (x,y). It is our goal to identify which coordinate system the
Babylonians used.
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Fig. Ǡ The Sun moving along the ecliptic.

Ǡ.Ǡ Comparison of observations using recalculated positions

The procedure for identifying the coordinate system is based on a method which uses
the systematic errors that occurred in the data when the coordinate system assumed to
have been used by the Babylonians to take their measurements is, in fact, the wrong one.
As the characteristic errors for an assumed measurement procedure usually appear as sys-
tematic errors in the obtained data differences, we, therefore, analyzed the observations
by comparing them with modern recalculations. The coordinate differences between
the observed values and the recalculated values can give us clues about the correctness
of the assumed coordinate system, as such differences appear much the same in different
coordinate systems, although they are not uniform for different regions of the sky.

If the Babylonian observations had been recorded as angular differences in a coor-
dinate system that differs from the coordinate system we used to recalculate the differ-
ences, then characteristic errors, which vary in size and direction across the sky, would
occur. It is, therefore, not enough to take the mean deviations of the calculated positions
of the stars for all the observations made (irrespective of their position in the sky) or to
examine statistically their dispersion. Because of the variations in coordinate differences,
one cannot simply use standard fits to identify the underlying coordinate system.

Ǡ.ǡ Systematic errors

The annual path of the Sun follows the ecliptic, and is plotted as a line of dots in Fig. Ǡ.
The ecliptic crosses the celestial equator at the spring (0◦) or autumn equinoxes (180◦).
All our calculations refer to the equinoctial points and solstices at the time of observa-
tion. When we could compare the coordinate differences originally recorded using an
equatorial coordinate system with the recalculated positions within an ecliptical refer-
ence system, we introduced a specific systematic error.
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First, we show the effect with simulated data. Let us superimpose the zero points of
the equatorial and ecliptical celestial coordinate systems in Fig. ǡ: the left column shows
the position of stars plotted using the equatorial coordinate system. It should be noted
that the values increase from right to left.

Now, if the observations had been made in one of the coordinate systems, and the
positions of the two objects had been calculated in the other coordinate system, then
typical systematic errors should have occurred:

– The coordinate systems would have rotated against each other at the spring and
autumn equinoxes. The difference vectors would have rotated as well.

– The coordinate systems would have lain parallel at the summer and winter solstices.
And there would be no differences in the measurements of angular distances at the
solstices.

At the equinoxes the ecliptic is inclined maximally towards the equator; the correspond-
ing directions of the angular distances between the two celestial objects incline by the
same degree.

The aim of our procedure is to determine whether such a systematic turn can be de-
tected in the reconstructed data or not. If the angular distances recorded in the observa-
tional reports are compared with the recalculated differences using the wrongly assumed
coordinate system, a characteristic rotation would show up in the data. Therefore, the
method should clearly falsify the incorrect assumptions made about the assumed mea-
surement procedures. If the right coordinate system was chosen for the recalculations,
then the systematic rotational error should not appear. In order to simulate the effects
of the presumed coordinate systems, we will now take a look at the positions of pairs of
celestial bodies in their respective regions of the sky.

Ǡ.ǡ.ǟ True equatorial system compared with equatorial data

First, we test the assumption that the observations were based on the equatorial system
by transferring the abstract observations from Fig. ǡ to the equatorial coordinate system.
This is done four times at the aforementioned key positions. We then distribute eight
objects in the square around object two in the middle column, each with an angular
difference of 1◦ in one of the coordinates (left of Fig. ǡ). The corner coordinates of the
respective points are situated at a distance of 1◦ up or down and 1◦ to the right or left
from the reference object in the middle of the square. When we calculated the positions
of all the celestial objects using the equatorial coordinate system, we got a figure identical
to the one at the left-side diagram of Fig. ǡ. In general, rotations would only occur if we
used the wrong coordinate system to recalculate the positions.
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Fig. ǡ Left column: coordinate differences on all four cardinal points of an equatorial system. Middle column:
coordinate differences on all four cardinal points of an ecliptical system. Right column: differences of the dis-
tances. Rows from top to bottom: spring equinox (SE), summer solstice (SS), autumn equinox (AE), winter sol-
stice (WS).
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Ǡ.ǡ.Ǡ True equatorial system compared with ecliptical data

If we now calculate the same object using the corresponding ecliptical coordinate sys-
tem, Fig. ǡ shows that no discernible deviations can be noticed in the solstices. How-
ever, there is a noticeable rotation at the equinoxes, which falsifies the hypothesis that
the original observations were made using an ecliptical coordinate system.

Ǡ.ǡ.ǡ True ecliptical system compared with ecliptical data

We will now assume that the Babylonians made their measurements using the eclipti-
cal system, and we will then calculate the deviations between both the ecliptical and
the equatorial recalculations. If the coordinate system used for making the observations
and the recalculations are the same, then no noticeable rotation should appear at the
equinoxes, and no rotation at the solstices.

If we look for the vernal point at the top row diagram, the shaft ends of the arrows
stand where the celestial bodies are located in accordance with the equatorial coordinate
system of Fig. ǡ, whereas the arrowheads indicate the shifted position of the object’s
coordinates according to the recalculated ecliptical coordinate system.

As the Babylonian observations recorded the angular distances between two objects,
the systematic deviations of the angular distances systematically superimposed the mea-
sured values: there are hardly any differences at the solstices, but there are rotations at
the vernal and autumnal points.

It is important to note that we depict the differences between the calculated and
observed positions using the measuring system (x,y) and not using a celestial coordi-
nate system. By way of example: the greater the distance between object 1 and object 2
in the top row illustration, the greater the deviation will be. At the solstices, the axes of
the two coordinate systems are parallel to each other and so there should be no devia-
tions. The systematic rotation thus only appears relatively in the measuring system, not
absolutely in the sky. Hence, it is only visible when comparing Babylonian observations
with distances, recalculated using different test coordinate systems.

Ǡ.ǡ.Ǣ The ecliptical coordinate system

The systematic errors will be reversed when the assumed coordinate system is ecliptical,
and the equatorial system is used for calculating the positions.

Again, the actual differences of the eight objects around the reference object in the
middle are only shifted by 1◦ in a coordinate and thus, in sum, all these deviations result
in a square distribution around the second object.
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If we superimpose the equatorial coordinate system over the actual ecliptical co-
ordinate system, the typical rotations of the differences occur at the equinoxes – only
in reverse. The values of the angular distances rotate clockwise at the vernal point and
counterclockwise at the autumnal point. This is a general definition of the test method.
Thus, the test method is defined in general terms.

Ǡ.Ǣ Test procedure

Because of these complementary systematic errors, we can set up a test procedure for
determining which coordinate system was used.

ǟ. Based on the observed angular distances, we calculate the positions of object 1, in
both the equatorial and in the ecliptical systems. We compare these positions using
state-of-the-art coordinate calculations of the objects. We then plot the deviations
in the measuring system (x,y).

Ǡ. If the Babylonians did their measurements using the equatorial system, but we eval-
uated their findings using the ecliptical system, we should be able to observe a faulty
counterclockwise rotation at the vernal point and a clockwise rotation at the autum-
nal point. No rotations should appear at the solstices.

ǡ. If the Babylonians made their measurements using the ecliptical system, but we eval-
uated their findings using the equatorial system, then we should observe a faulty
clockwise rotation at the spring point and a counterclockwise rotation at the au-
tumn point. No rotations should appear at the solstices.

Ǣ. If we made our comparisions using the same coordinate system as the Babylonians,
there should be no rotations at all.

We thus arrive at a sensible testing procedure (Tab. Ǡ).

ecliptically calculated equatorially calculated

ecliptical Babylonian no rotations SE: clockwise|AE: countercl.

equatorial Babylonian SE: countercl.|AE: clockwise no rotations

Tab. Ǡ Decision criteria for best-fitting coordinate system.
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We thus obtain two different tests that enable us to ascertain which coordinate sys-
tem the Babylonians used. Based on the observed angular distances of the two recorded
celestial objects, we calculate their positions twice: once using the ecliptical system, once
using the equatorial system. The distribution of the findings depicted in Tab. Ǡ reveals
why one should apply the systems that the Babylonians used.

Ǡ.ǣ With stochastic errors

Before we analyze the real data, let us look at the effect of random errors in the observa-
tions, which occurred when the Babylonian took their measurements.

Ǡ.ǣ.ǟ Equatorial coordinate system for observation

The observations of the Babylonian astronomers show small, random errors, as is the
case for all empirically measured values. These so-called stochastic errors randomly in-
fluence the measured positions of the two objects. The question then arises as to whether
these statistical errors overlap the systematic errors in such a way that we can no longer
discern the rotations.

In Fig. Ǣ, the eight positioned objects show a random error of deviating from 1◦ inx and y. The first example is based on the equatorial coordinate system and the random
errors concerning the equator are superimposed on both coordinate systems.

If we now calculate the positions of the objects using the ecliptical coordinate sys-
tem, even if the observations were made equatorially, then the systematic error of the
aforementioned discussion overlaps with the stochastic error of the individual observa-
tion. As a result, we can discern the meanwhile well-known rotation of the deviations
of the angular distances of both objects.

Ǡ.ǣ.Ǡ Ecliptical coordinate system for observation

In the case of the observation of the positions in the ecliptical coordinate system and the
subsequent calculation of the position in the equatorial coordinate system, we can ob-
serve a similar superimposition with stochastic errors. The only difference is that in this
case the systematic errors rotate in the reverse direction in the solstices. In the solstices
only random errors are visible.

If, in this case, no rotation appears, but we can could observe stochastic errors in
such a dimension that a rotation of the coordinates is visible, then the calculated eclip-
tical coordinates in fact match the observed data.

ǧǠ



̤̘̕ ̢̟̟̙̞̤̓̔̑̕ ̣̩̣̤̝̕ ̟̖ ̢̣̤̟̞̟̝̙̜̑̓̑ ̢̟̣̦̤̙̟̞̣̒̑̕

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

++

-2 -1 0 1 2
-2

-1

0

1

2

x @°D

y
@°
D

Fig. Ǣ Superimposed stochastic errors plus systematic errors. Left column: no systematic errors. Middle column:
systematic from recalculated ecliptical instead of equatorial system. Right column: equatorial instead of ecliptical
coordinate systems. Rows from top to bottom: spring equinox (SE), summer solstice (SS), autumn equinox (AE),
winter solstice (WS).
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Fig. ǣ Double coordinate obser-
vations of coordinate differences.

Ǡ.Ǥ Analytical findings

In the following, we investigate the measurements of configurations with double coor-
dinates. Outliers with a deviation of more than 5◦ have been excluded. The number of
observations comprises 595 measurements. If we transfer the observed angular distances
to the second object, which is situated at the origin of the measuring system, we get the
distribution shown in Fig. ǣ. It can be seen clearly that the Babylonians measured the
northern and southern distances in latitude for greater distances than in the case of the
longitudes.

This is in fact a consequence of the moment when the measurement was made: The
moment is recorded when the first object passed the second object above the horizon,
with as little distance as possible – a movement which can be observed. As the solar
system objects, including the Moon, move along the ecliptic, the smallest distance to
the second object is determined by two aspects for both coordinates: the minimal lati-
tude is given by the ecliptical difference in latitude of both objects and varies depending
on the ecliptical latitude of the first object. The minimal length is determined by the
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Fig. Ǥ Differences of distance vectors using ecliptical coordinates (left) and equatorial coordinates (right) for
all cardinal points. Rows from top to bottom: spring equinox (SE), summer solstice (SS), autumn equinox (AE),
winter solstice (WS).
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observation window, which was just big enough to make the measurement of the passage
possible. It is due to these aspects that both measuring coordinates show a different
dispersion in the measurement area. However, this does not mean that both coordinates
comprise differently sized measurement errors. The measuring accuracy could still be
similar for both coordinates.

We have now calculated the positions of the celestial bodies in ecliptical and equa-
torial coordinates in order to analyze the characteristics of the data. We have calculated
the coordinate differences for our measurement system (x,y), which can be deducted
from these data.

Using four rectangles measuring 90◦× 180◦, we have chosen observations for which
the second object is situated within this field. Fig. Ǥ comprises the findings: the left-hand
column shows the calculated ecliptical coordinate differences starting from the vernal
point (in the uppermost row) to the winter solstice in the fourth row. The right column
shows the coordinate differences for the equatorial calculation for the same regions in
the sky. Let us first look at the right column. In the uppermost row, we calculate the co-
ordinates for the vernal point, using equatorial coordinates. We receive a characteristic
rotation in a clockwise sense. If we calculate the errors in the ecliptical coordinate system
in the first column, no rotations appear. The findings for the autumnal point show the
same results. For the calculation in the equatorial coordinate system, the errors appear as
counterclockwise rotations. The errors rotate counterclockwise as a result of a systematic
error due to the fact that the equatorial coordinate system has erroneously been applied.
As can be seen, the calculation of the coordinate difference for the ecliptical calculation
shows no rotations. These findings unambiguously establish that the Babylonians used
the ecliptical coordinate system to record their data. The reported quantities of the con-
figurations of two celestial objects measure coordinate differences.

ǡ Further corroborating findings

ǡ.ǟ Magnitude of error vectors

The orientation of the systematic error vectors is the crucial argument for deciding
which coordinate system was used by the Babylonians. Nevertheless, the magnitude of
the total error vectors (i.e. systematical plus stochastic errors) should support this argu-
ment. In Fig. ǥ we compiled the errors, once assuming the ecliptical and once assuming
the equatorial system.
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Fig. ǥ Distribution of positional errors: if (a) the recalculated positions are given in equatorial coordinates; or
(b) in ecliptical coordinates. Note that the distribution is denser when ecliptical coordinates are used, which is
equivalent to a better fit of the recalculated and the documented data.

The corresponding RMS errors are found in Tab. ǡ and were calculated by (n=595):

RMS error =

√

√

√

√

1n
n
∑

i=1

(xi,observed − xi,computed
)2

equatorial ecliptical error decrease

x-direction 2.05◦ 1.51◦ −26.4%

y-direction 1.57◦ 1.27◦ −19.1%

Tab. ǡ RMS errors in x- and y-
direction, assuming the ecliptical
and equatorial coordinate system,
respectively.

ǡ.Ǡ Special cases

In Fig. Ǧ we display a Babylonian observation that reads: ‘in the last part of the night the
moon is 5◦ above mars and 0.5◦ passed to the east’ (observation no. 5975). Calculated in
the ecliptical system, the Moon (dots) is always East from Mars (center cross) from the
first sight possible of the Moon (Moonrise) until the last sight possible (Sunrise). Calcu-
lated in the equatorial system, however, the Moon is never East but always West of Mars

ǧǥ
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Fig. Ǧ Observation No. ǣǧǥǣ.
Cases of different relational con-
figurations depending on the
compared coordinate system.

throughout the possible time of visibility. Thus, if the Babylonian used the equatorial
system, they must have confused the directions East and West.

Now, there are 30 observations, which were coincidentally made in one of the four
quadrants built by the equatorial and the ecliptical coordinate axes (see Fig. Ǧ). 25 of
these observations can be explained in both systems, due to the uncertainty of the ob-
servation time, whereas five observations (like the one mentioned) cannot. For each and
every of these five observations, the ecliptical system fits, whereas the equatorial doesn’t.
So, if we assume the equatorial system as correct, we would have to accept that the
Babylonians confused the directions East-West and North-South exclusively for these
five observations. If we assume the ecliptical system as correct, all indications of direc-
tions (including the 25 others) are correct.

ǡ.ǡ Other ancient witnesses

Babylonian astronomy strongly influenced Ptolemaic astronomy, particularly through
the work of Hipparchus, in whose Commentary on the Phenomena of Aratus and Eudoxus we
find extensive usage of Babylonian terminology.4 Ptolemy referred to two observations

4 Cf. Neugebauer ǟǧǥǣ, Ǡǥǧ–ǠǦǟ, ǡǞǢ, ǣǢǢ, and ǣǧǟ–
ǣǧǡ.
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Fig. ǧ Mercury’s approximate position relative to the stars, according to Ptolemy’s description.

of Mercury that seem to be of Babylonian origin,5 and used them to derive his planetary
model. He quoted the two observations without fully converting them to the Greek
metrological system:

In the ǥǣth year in the Chaldean calendar, Dios 14, at dawn, [Mercury] was half
a cubit [ca. 1◦] above [the star on] the southern scale [of Libra]. Thus at that
time it was in a 14 1

6
◦, according to our coordinates. […]

In the Ǥǥth year in the Chaldean calendar, Apellaios 5, at dawn, [Mercury] was
a half a cubit [ca. 1◦] above the northern [star in the] forehead of Scorpius (β).
Thus at that time it was in b 2 1

3
◦, according to our coordinates.6

See Fig. ǧ for the computation of Mercury’s position relative to the stars for the afore-
mentioned dates.

Ptolemy paraphrased both observations in the form of topographical relationships
‘object 1 above object 2 by X cubits (Babylonian: kù̌s)’, which is clear proof of their
Babylonian origin. Even more interesting are the details of his evaluation. The quantities
are measurements of the differences in latitude between Mercury and the particular star.
Ptolemy, however, used this observation to determine planetary longitude. How did he
arrive there?

5 Cf. Neugebauer ǟǧǥǣ, ǟǣǧ.
6 Ptolemy, Almagest Book IX, ch. ǥ, cited from Toomer

ǟǧǦǢ, ǢǣǠ. The omission […] and the insertion in

round brackets (‘β’) are made by the authors, all
other bracketed insertions were added by Toomer.
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If he reduced the stellar longitudes for the epoch of the observations, according
to his theory he had just to subtract the value for the precession: 3◦ 50′ for 373 years
in the case of the first observation and 4◦ for 381 years for the second observation.7 In
the star catalog of the Almagest, β Scorpii has a longitude of b 6◦ 20′ and α Librae
a longitude of a 18◦. In the second case, the resulting longitude would be a little too
large. It is plausible that Ptolemy did not reduce the longitudes from the star catalog,
but used Hipparchus’ value or, alternatively, that of the Babylonian astronomers, and
then added the precession constant to these values.

Independent of the exact derivation of the longitude, it is remarkable that Ptolemy
assumed that Mercury and the stars have the same longitude. He seemed to find the mea-
sured coordinate of half a kù̌s unimportant to the calculation, which demonstrates that
he interpreted the Babylonian report in two ways:

ǟ. The measured topographical relationship is a coordinate value, e.g. either longitude
or latitude.

Ǡ. Since he identified the other coordinate with the longitude, the topographical re-
lationships need to be understood in the framework of the ecliptical coordinate
system.

Ptolemy took these excerpts from Hipparchus, who had extensive access to Babylonian
ideas.8 Without a doubt Ptolemy fully understood the meaning of the Babylonian ob-
servation reports.

Ǣ Conclusion

At the time of the first publication of the Babylonian diaries by Hermann Hunger, it
was completely unclear whether the observations of the moon passages along the stars
or planets were at all measured, and if they were, which astronomical reference system
had been applied. In ǟǧǧǣ, the research results on Babylonian astronomical diaries were
presented at the Dibner Institute in Boston. According to these results, the ecliptical
system has been ‘diagnosed’ to be the system that matches the documented data best.9

7 Note that Ptolemy uses a precession constant of one
degree per one hundred years, which is much too
small.

8 I have purposefully avoided referring to ‘sources’, al-
though it is highly probable that Hipparchus had
comprehensive access to either original or tran-

scribed Babylonian sources, considering the wealth
of Babylonian concepts that he utilized. Cf. Toomer
ǟǧǦǢ.

9 Alexander Jones extended the testing of the hy-
pothesis to the case of configuration observations
of planets in Jones ǠǞǞǢ.
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A more elaborate argument has been developed in the article presented here. This
argument tries to examine to what extent the assumption of a specific coordinate sys-
tem would generate characteristic errors in the statistical data, and whether these errors
would rule out the application of such a coordinate system. This elimination procedure
is very specific and statistically significant, and surpasses the levels of significance of
usually applied evaluation criteria. The comparison of the two main hypotheses for the
reconstruction of the Babylonian coordinate system presented here show clear differ-
ences with regard to their exclusion criteria. The equatorial coordinate system creates
specific rotation effects in the reconstructed quantitative data, which change their ro-
tation direction according to the celestial quadrant. The rotational quadrants can be
identified in the database. Thus, the configuration data of the Babylonian diaries was
not recorded in an equatorial system, as the alternative ecliptical system does not show
these rotation effects.

This evidence, together with the earlier research results, strongly supports the hy-
pothesis that the Babylonian astronomers either directly observed or calculated passages
in the ecliptical coordinate system and systematically noted down their observations on
a day-to-day basis.
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