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Summary

In this investigation, I sketch the way in which Babylonian astronomers may have derived
the basic parameters of their lunar theory. I propose that the lunar velocity period of 6247
synodic months which underlies the construction of functions Φ and F of system A is de-
rived by fitting a multiple of the Saros period of 223 synodic months within an integer
number of solar years using the Ǡǥ-year Sirius period relation. I further suggest that the
lunar velocity period of 251 synodic months used to construct function F of system B is a
direct derivative of the ǤǠǢǥ-month period. I also briefly discuss the origin of the periods
of the solar velocity function B (of system A) and of the solar longitude function A (of sys-
tem B) suggesting that the periods of these functions may have been derived from a refined
version of the Ǡǥ-year Sirius period. I finally discuss the timeframe of the possible stepwise
development of these early lunar and solar functions.

Keywords: History of science; history of astronomy; Babylonian astronomy; Babylonian lu-
nar theory; Babylonian lunar and solar periods.

In dieser Untersuchung skizziere ich, auf welche Weise babylonische Astronomen die grund-
legenden Parameter ihrer Mondtheorie möglicherweise abgeleitet haben. Die Mondgesch-
windigkeitsperiode von 6247 synodischen Monaten, die der Konstruktion der Funktio-
nen Φ und F des Systems A unterliegt, sind dadurch abzuleiten, dass man ein Vielfaches
der Sarosperiode von 223 synodischen Monaten unter Verwendung der Ǡǥ-jährigen Siri-
usperiode in eine ganzzahlige Anzahl von Sonnenjahren einpasst. Des Weiteren schlage
ich vor, dass die Mondgeschwindigkeitsperiode von 251 synodischen Monaten, die für die
Konstruktion von Funktion F des Systems B genutzt wird, ein direktes Ergebnis der Peri-
ode von 6247 Monaten ist. In aller Kürze diskutiere ich auch die Ursprünge der Perioden
der Sonnengeschwindigkeitsfunktion B (des Systems A) und der SonnenlängenfunktionA (des Systems B) und schlage vor, dass die Perioden dieser Funktionen eventuell aus ei-
ner präzisierten Version der Ǡǥ-jährigen Siriusperiode hervorgehen. Abschließend wird der
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Zeitrahmen der möglicherweise schrittweisen Entwicklung der frühen Mond- und Sonnen-
funktionen diskutiert.

Keywords: Wissenschaftsgeschichte; Geschichte der Astronomie; Babylonische Astrono-
mie; Babylonische Mondtheorie; Babylonische Mond- und Sonnenperioden.

I have profited from discussions with and from critical remarks of many colleagues of whom
I wish to mention here Lis Brack-Bernsen, the late John Britton, Alex Jones, Mathieu Os-
sendrijver and John Steele.

ǟ Introduction

One of the most basic questions in the field of Babylonian astronomy, “How did the
scholars get from the observations as recorded in the Astronomical Diaries1 to the theo-
retical computations as we know them from the ACT-type2 texts”, is still incompletely
answered. What we do know is that the development of Babylonian lunar and planetary
theory is based on periodicities in the orbital motion of the Sun, Moon, and planets.
From the observed periods longer theoretical ‘great’ periods (of order several centuries
up to about one millennium) were constructed by linear combination, and using these
‘great’ periods the observed variations in orbital velocity were cast in strictly periodic
step functions and/or zigzag functions. These functions are based on linear difference
schemes and involve extensive computation. The specific choice of the parameters char-
acterizing these functions appears often to have been based on arithmetic convenience
with the purpose of simplifying the calculations.3

In this paper I will limit myself to Babylonian lunar theory and I will concentrate on
an investigation into the observational basis of the derivation of the basic periods used
in the computation of the angular velocity of the Moon (column F in the ephemerides
of systems A and B) and of the Saros function Φ (system A). It was through the work
of Lis Brack-Bernsen4 and several of her lectures that I became initially interested in –
and after a while fascinated by – function Φ and its secrets and intricacies. This paper

1 Sachs and Hunger ǟǧǦǦ–ǠǞǞǟ; henceforth referred
to as the Diaries.

2 Astronomical Cuneiform Texts (Neugebauer ǟǧǣǣ);
henceforth referred to as ACT.

3 This is most obvious in the choice of the values for
the angular velocities of the Sun and the planets in
the ephemerides of system A. There we find that
the angular velocities have different values in differ-

ent sections of the Zodiac which are related by sim-
ple ratios. For instance in ephemerides where the
360◦ zodiac is divided into two sections we find for
Saturn angular velocities in the proportion 21 : 25,
for the Sun 15 : 16, and for Jupiter 5 : 6 (see Aaboe
ǠǞǞǟ, Tab. ǡ).

4 Brack-Bernsen ǟǧǧǥ.
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may be considered as a progress report of an investigation into the early development
of Babylonian lunar theory which grew out of this fascination.

The time frame for the early development of Babylonian lunar theory is constrained
by the lunar text BM 36737+ 47912 and its duplicate BM 36599 discussed by Aaboe and
Sachs.5 This text contains full-fledged versions of functions F1 and Φ1 of lunar system A
(the index 1 refers to functions evaluated at New Moon, while index 2 refers to Full
Moon) for the years 474–457 BC and may have been written shortly afterwards. Func-
tions Φ and F of system A are zigzag functions based on the same long period of 6247
synodic months. Lunar system A contains one more function with this same period:
function G which gives a first approximation to the excess in days of the synodic lunar
month over 29 days.

The other text discussed by Aaboe and Sachs is BM 36822 (+ 27022).6 It also con-
tains fully developed versions of functions F1 and Φ1 computed for 398 BC and in ad-
dition a crude system A like function for the solar longitude, as well as primitive ver-
sions of functions G, C (length of daylight) and M (time between syzygy7 and sunset/
sunrise).

So it seems that functions F (lunar velocity) and Φ (excess time of one Saros of
223 months over 6585 days) were fully developed by the middle of the fifth century BC
and that the solar longitude function B of system A was still under development around
400 BC. The earliest lunar ephemeris known so far (of system A) dates from 319 BC,8

while the last known Babylonian lunar ephemeris (also of system A) dates from 49 BC
(ACT 18).

Even a cursory treatment of Babylonian lunar theory is outside the scope of this pa-
per but a short summary of its main features seems appropriate. For a detailed treatment
the reader may be referred to Neugebauer’s History of Ancient Mathematical Astronomy.9

Lunar ephemerides come in two varieties, called system A and system B. In system A
the lunar (solar) longitude at syzygy (function10 B) is represented by a step function; all
other functions are represented by (modified) zigzag functions. In system B all functions
are represented by (modified) zigzag functions; the periods adopted for the construction
of these functions in system B differ from those adopted in system A.

Representative examples of lunar ephemerides are ACT 5 (New Moons for S.E. 146–
148 according to system A) and ACT 122 (New Moons for S.E. 208–210 according to

5 Aaboe and Sachs ǟǧǤǧ.
6 Aaboe and Sachs ǟǧǤǧ.
7 The term syzygy refers to the conjunction or opposi-

tion (Full Moon) of the Sun and Moon.
8 Aaboe ǟǧǤǧ.

9 Neugebauer ǟǧǥǣ, ǢǥǢ–ǣǢǞ; henceforth referred to
as HAMA.

10 In this paper I will often not discriminate between
functions and columns. For example function B
stands for the mathematical function reproducing
the arithmetical sequence of numbers displayed in
column B of the ephemeris.
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system B). The ultimate goal of the construction of lunar ephemerides was to predict
a number of lunar phenomena:

– length of the lunar month (columns G–K)
– lunar eclipse magnitudes (columns E and Ψ)
– date and time of syzygy (columns L–N)
– duration of first and last visibility of the Moon (columns O–P)

Prerequisites for the computation of these quantities are the function Φ which serves as
an auxiliary function for the computation of function G in system A, the longitude of
the Sun/Moon at syzygy (function B in both systems), the orbital velocity of the Moon
expressed as its daily displacement (function F in both systems) and the length of day-
light (function C in both systems). The fact that these basic functions occupy the first
few columns in both systems may be related to the stepwise character of the compu-
tation of the ephemeris but it may also reflect the gradual development in time of the
theoretical framework on which the computation is based.

In a recent series of papers Britton has argued that the construction of system A
lunar theory was a singular creative act by an unknown author rather than a gradual
development where a limited number of different scholars during several succeeding
generations contributed to its final form as we know it from the surviving ephemerides
of the Seleucid and Arsacid era.11 He dates the invention of system A lunar theory to
within a few years of 400 BC and the derivative system B theory about one century later.

In his study Britton emphasizes that the invention of the Babylonian zodiac of 360◦

must predate – or have been invented simultaneously with – the construction of sys-
tem A lunar theory.12 He suggests that the invention of the Babylonian zodiac must
have taken place between 409 and 398 BC, consistent with his dating of system A lunar
theory. His dating is somewhat late compared to the more generally accepted view that
the Babylonian zodiac was introduced into Babylonian astronomy sometime during the
second half of the fifth century BC.13

The parameters on the basis of which the ephemerides are constructed must have
been derived from lunar observations, extensively and routinely carried out during cen-
turies, probably those recorded in the Diaries from about 750 BC onward. As we have
seen above about 10 to 20 different functions are needed to build a full-fledged lunar
ephemeris. I will concentrate here on the periods of functions Φ and F of system A.
Based on the textual evidence mentioned above it seems that these functions were the
first ones developed by the Babylonian scholars and that both were fully developed by

11 Britton ǠǞǞǥb; Britton ǠǞǞǧ; Britton ǠǞǟǞ.
12 Britton ǠǞǟǞ.

13 See e.g. Steele ǠǞǞǥ, ǡǞǟ.
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System Column Function Π Z Years Period

Moon A Φ, F, G zigzag 6247 448 505 13.9442

Sun A B step 2783 225 225 12.3689

Moon B F, G zigzag 251 18 20.3 13.9444

Sun B A zigzag 10019 810 810 12.3691

Tab. ǟ Parameters of basic functions in lunar ephemerides.

the middle of the fifth century BC. In addition I will also briefly discuss the period of
function F of system B as a derivative of function F of system A, and the periods of
functions B (system A) and A (system B) which (are needed to) determine the position
of the Moon and/or Sun at the moment of conjunction or opposition (syzygy). As I will
argue later the development of these early basic functions was a gradual process taking
place within the community of Babylonian astronomers during the late sixth and fifth
century BC. The ‘great’ periods Π and wave numbers Z of these basic functions are
summarized in Tab. ǟ.

Several important properties and features of these functions and the parameters
defining them may be noted:

– The values adopted for the ‘great’ periods Π (in synodic months) and the wave num-
bersZ are generally so large that they must have been constructed from shorter (pre-
sumably observed) periods. This is also suggested by the fact that 6247 and 251 are
prime numbers. To a lesser extent this also holds for the periods 2783 (= 112 × 23)
and 10 019 (= 43 × 233) which can be factorized but only into products involving
fairly awkward prime numbers. The construction of ‘great’ periods by linear com-
bination of shorter observed periods in Babylonian astronomy is also known from
planetary theory. If lunar theory was developed first this technique may have been
pioneered in the construction of these early lunar functions.

– The specific choice of the parameter values may also have been influenced by arith-
metical convenience. This is suggested by the factorization of the wave numbers Z
into nice low prime integers: 448 = 26 × 7, 225 = 32 × 52, 810 = 2 × 34 × 5,
and 18 = 2 × 32. Notice that several of these wave numbers show nice behavior
in sexagesimal arithmetic (60 = 22 × 3 × 5).
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– Another important aspect of the construction process appears to be that the ‘great’
period Π generally spans an integer number of solar years. This is also known from
planetary theory and is generally thought to be introduced to eliminate the effect
of variable solar velocity (solar anomaly). The numbers in Tab. ǟ suggest that the
Ǡǥ-year Sirius period (334 synodic months= 27 solar years) was used in the con-
struction of the period of functions F and Φ because 6247 synodic months span
almost exactly 505 years (minus 1 day) while according to the ǟǧ-year cycle (235 syn-
odic months= 19 solar years) 6247 synodic months are equivalent to 505 years plus
28 days. On the other hand, the ǟǧ-year cycle does result in a better – albeit far from
perfect – approximation to the periods of the solar functions B and A (errors of
3 and 17 days, respectively). Since the ǟǧ-year cycle was recognized as superior to
the Ǡǥ-year Sirius period by the end of the sixth century BC,14 this suggests that the
ǤǠǢǥ-month period is the oldest period in the lunar theory and that its derivation
dates from before 500 BC.

– The reason why the system B lunar period of 251 months does not fit an integer
number of years may be related to the way in which that period was derived as will
be discussed later in this paper.

– If function Φ was originally meant to represent the time difference between two
eclipses one Saros apart as first suggested by Neugebauer,15 it involved Full Moon
dates only (function Φ2), running from one Full Moon to the next one with a time
step of one synodic month. The new moon function Φ1 was probably derived
later from an intermediate daily variant function Φ∗ by applying a phase shift of
15 tithis’s with respect to the Φ2-values.16 It is consistent with this scenario that the
original function Φ2 – and not Φ1 – contains the ‘nice value’ 2,0,0,0,0,0 which may
have been adopted as initial value. The values of function Φ are generally ‘dirty’
sexagesimal numbers with 5 ‘decimal’ places.17 Of all 6247 entries of function Φ2

only two are ‘nice’ numbers, both having the value 2,0,0,0,0,0, one on an ascending
branch and one on a descending branch. Note that 2 ‘large hours’ correspond to
2,0 UŠ,18 equivalent to 480 minutes of time or 8 equinoctial hours, indeed about
the average time interval between eclipse times of two eclipses one Saros apart.
The average value of function Φ2 equals 2;7,26,26,20,0 ‘large hours’, equivalent to
8 ½ equinoctial hours.

14 Britton ǠǞǞǠ, ǡǞ.
15 Neugebauer ǟǧǣǥ.
16 See HAMA, Ǣǧǧ–ǣǞǠ.

17 This may be illustrated by listing an arbitrary
set of five consecutive values of function Φ:
2,2,45,55,33,20; 2,5,31,51,6,40; 2,8,17,46,40,00;
2,11,3,42,13,20; 2,13,49,37,46,40; etc.

18 See HAMA, ǡǤǥ.

ǟǟǞ



̟̞ ̤̘̕ ̢̟̙̗̙̞ ̟̖ ̤̘̕ ̢̜̥̞̑ ̞̑̔ ̢̣̟̜̑ ̢̠̙̟̣̔̕

– Using the known relation of function Φ2 to the Babylonian lunar calendar,19 one
finds that Φ2 attained the value 2,0,0,0,0,0 (on an ascending branch) on the Full
Moon date of month VIII in year 1 of Cambyses, corresponding to Julian date
17 November 529 BC, a date listed in the Early Saros Scheme20. On this date a partial
lunar eclipse took place in Babylon with first contact occurring 45 UŠ after sunset.
The observation of this eclipse is recorded in the lunar eclipse text BM 36879.21

The date associated with the other value 2,0,0,0,0,0 of Φ2 (on a descending branch)
is the Full Moon date of month VII of year 25 of Artaxerxes I, corresponding to
26 October 440 BC. This date is not associated with a lunar eclipse.

– From ephemerides of system A one finds that functions Φ and F do not only have
the same period but also have the same phase. This is somewhat counter-intuitive
because function Φ is supposed to model the time elapsed between two lunar events
a whole number of lunar anomaly periods apart while function F models orbital
velocity (the lunar anomaly itself) so that one might a priori expect them to be
180◦ out of phase rather than in phase. Following a suggestion by John Britton,
Aaboe provides an explanation for this.22

– Finally I note that the accuracy of the astronomical parameters implicit in the peri-
ods and wave numbers displayed in Tab. ǟ is remarkably good. Dividing the periodsΠ by the wave numbers Z we display in the last column of Tab. ǟ the length of the
anomalistic lunar period (the number of synodic months after which the Full Moon
returns to the perigee of the lunar orbit, the point of closest approach of the Moon
to the Earth and – by definition – the position of maximum lunar velocity) and
the length of the (sidereal) solar year expressed in synodic months (the basic Baby-
lonian unit of time). Apparently Babylonian astronomers managed to determine
these parameters with an accuracy of about 10−5 and 10−4, respectively.

Ǡ The Ǡǥ-year Sirius period and the solar year

The first visibility of the bright star Sirius has played an important role in Babylonian
calendar regulation from early times onward. This is attested by several passages in the
astronomical compendium MUL.APIN23 dating from the late second millennium BC.24

It ultimately resulted in the intercalation pattern of the ǟǧ-year calendar cycle adopted
in Babylonia shortly after 500 BC.25

19 See HAMA, ǢǦǢ.
20 Steele ǠǞǞǞ.
21 See Huber and De Meis ǠǞǞǢ, ǧǢ.
22 Aaboe ǟǧǤǦ, ǟǞ–ǟǟ.

23 Hunger and Pingree ǟǧǧǧ, ǣǥ–Ǧǡ.
24 De Jong ǠǞǞǥ.
25 Sachs ǟǧǣǠ; Britton ǠǞǞǥa.
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The early text BM 45728 containing Babylonian period relations includes a Ǡǥ-year
Sirius period. This text was first discussed by Kugler and dated by Britton to around
600 BC.26 Use of the Ǡǥ-year Sirius period is attested in the early text BM 36731+ in
which rising and setting dates of Sirius are computed for the years 627–562 BC.27

Observations of the first visibility of Sirius show that after 27 years Sirius rises again
on about the same date in the Babylonian lunar calendar. This implies that 27 solar (si-
dereal) years correspond to 334 synodic months. This period relation is not very accurate
because the dates shift backward by about 1.5 days in the lunar calendar after each cycle.
Due to variations in the atmospheric extinction (weather) the dates of first visibility of
Sirius may vary by up to about 3 days around the nominal date so that it may have taken
the Babylonian astronomers about one century before they found out about the limited
accuracy of the Ǡǥ-year period.

One interesting aspect of the Ǡǥ-year cycle is the implicit existence of the Ǧ-year and
ǟǧ-year cycles. A period of 8 years corresponds to 8/27 × 334 = 98;57,46,40 synodic
months and 19 years corresponds to 235;02,13,30 months. Thus according to the Ǡǥ-
year cycle 99 months is 1;06,40 tithi longer than 8 years, while 235 months is 1;06,40
tithi shorter than 19 years. Around 500 BC when the ǟǧ-year cycle was adopted as the
fundamental calendar cycle, the Babylonian scholars had apparently realized that the Ǡǥ-
year cycle was about 1–2 tithis short and that the ǟǧ-year cycle was of superior accuracy.

ǡ Lunar Four observations and the Saros

The velocity of the Moon varies during its course through the heavens. Thanks to Jo-
hannes Kepler (1571–1630) we know now that this variability is due to the ellipse form
of the lunar orbit. The Moon reaches its largest velocity (∼16◦ per day) at perigee (mini-
mum distance to the Earth) and its lowest velocity (∼12◦ per day) at apogee (maximum
distance to the Earth). The perigee progresses about 3◦ per synodic month so that it takes
the Moon longer to return to its perigee (27.55 days) than to return to the same position
in the sky (27.32 days). Since the Sun moves about 30◦ per month it takes even longer
for the Moon to move from one Full Moon to go the next one (29.53 days). The devi-
ation from circularity of the lunar orbit is known as its anomaly (after Ptolemy) and
the time it takes for a Full Moon at perigee to return to the next Full Moon at perigee
(13.94 synodic months) is called the anomalistic period of the Moon. After one anoma-
listic period the Moon has completed 15 orbital revolutions and an additional 24◦ in
the sky. The ellipse form of the lunar orbit is a modern notion; Babylonian astronomers
were thinking in terms of variable velocity of the Moon.

26 Kugler ǟǧǞǥ, Ǣǣ–ǢǦ; Britton ǠǞǞǠ, ǠǤ. 27 Britton ǠǞǞǠ.
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Early Babylonian awareness of a roughly ǟǢ-month velocity period of the Moon is
attested in Atypical Text C, first discussed by Neugebauer and Sachs and most recently by
Brack-Bernsen and Steele.28 This awareness probably originates from inspection of long
sequences of so-called Lunar Four data,29 which were routinely recorded in the Diaries.
The Lunar Four consist of the set of four observations of the time elapsed between sun-
rise/-set and moonrise/-set on days around full moon: ŠU (sunrise to moonset around
sunrise), NA (moonset to sunrise around sunrise), ME (moonrise to sunset around sun-
set), and GE6 (sunset to moonrise around sunset).

The earliest collection of Lunar Four observations dates from the late seventh cen-
tury BC (BM 38414).30 The well-preserved text Strassmaier Cambyses 400 (BM 33066)
contains Lunar Four observations for the seventh year of Cambyses II (523/522 BC). The
fact that the data set in Cambyses 400 is virtually complete implies that missing obser-
vations (e.g. due to bad weather) must have been filled in by some predictive method.
Britton suggests that most probably previous data – one or more Saroi back – were used
for this.31

Brack-Bernsen and Schmidt have shown that the Lunar Four observations play an
important role in the early development of Babylonian lunar theory.32 They realized
that the sum of the observed values of the Lunar Four, a quantity they called Σ, provides
a good approximation to twice the lunar velocity at full Moon. Thus the availability of
long sequences of Lunar Four observations enabled the Babylonian scholars to study the
variability of the lunar velocity. In this way they must have first discovered the crude ǟǢ-
month period in the return of the Full Moon to maximum (or minimum) lunar velocity
and later the refinement of this period to 223/16= 13.9375 synodic months based on the
Saros period of 223 synodic months. The latter is based on the realization that 16 lunar
velocity periods are more accurately approximated by 223 than by 224 synodic months.

Lunar and solar eclipses are already mentioned in the Old-Babylonian omen series
‘Enuma Anu Enlil’ (second millennium BC). Reports and letters sent by Assyrian and
Babylonian astronomers to the Assyrian kings Esarhaddon and Assurbanipal in the sev-
enth century BC show awareness that lunar eclipse possibilities occurred at intervals of
6 and (occasionally) 5 months. Lunar eclipses were recorded routinely in the Diaries.
The oldest preserved Diary dates from 652 BC.

From the available texts it appears that at the end of the seventh century BC, a de-
tailed scheme to predict lunar eclipses based on an ǟǦ-year cycle (the so-called Saros)
had been worked out.33 These texts suggest that apparently a continuous lunar eclipse
record was available from ∼750 BC onward.

28 Neugebauer and Sachs ǟǧǤǥ; Brack-Bernsen and
Steele ǠǞǟǟ.

29 See Hunger and Pingree ǟǧǧǧ, ǟǧǤ–ǟǧǦ.
30 Huber and Steele ǠǞǞǥ.

31 Britton ǠǞǞǦ; see also Brack-Bernsen ǠǞǞǠ.
32 Brack-Bernsen and Schmidt ǟǧǧǢ.
33 Steele ǠǞǞǞ.
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The Saros consists of a sequence of 38 lunar eclipse possibilities distributed in a fixed
pattern of groups of 8 or 7 eclipses at Ǥ-months intervals, each group separated from
the next one by a ǣ-month interval, altogether totaling 223 synodic months, equivalent
to about 18 years. After one Saros the Sun, Moon, and Earth return to approximately
the same relative geometry and a nearly identical lunar eclipse will occur. The Saros
derives from the approximate equality: 223 synodic months (29d.530588) ≈ 242 dra-
conitic months (27d.212220)≈ 239 anomalistic months (27d.554550)≈ 6585 1/3 days=
18 years + 10 (or 11) days + 8 hours. The Saros is referred to in the texts as ‘18 MU.MEŠ’
(‘18 years’).

It turns out that all eclipses mentioned in Babylonian astronomical texts – either
predicted or observed – between 750 and 300 BC are part of the so-called ‘Early Saros
Scheme’.34 The Early Scheme breaks down around 300 BC because the resonances be-
tween the different periods on which it is based are not perfect. There is evidence that
the Saros scheme was revised several times after 300 BC. The revision around 260 BC
resulted in the so-called ‘Saros Canon’.35

The Babylonian scholars must have discovered the Saros period by inspecting their
large database of hundreds of lunar eclipses and recognizing that after one Saros lunar
eclipses repeat with similar magnitude, occultation pattern and duration.36 This similar-
ity evolves quite slowly so that it typically persists for some hundred years for successive
eclipses in one and the same line of the Saros scheme.

Measured in days the Saros period corresponds to 6585 1/3 days so that for lunar
eclipses in one and the same line of the Saros scheme, we have:

– After three Saros periods (about 54 years) similar lunar eclipses occur at about the
same time of night,

– Lunar eclipses in a Saros line often occur in pairs, separated by one or two unob-
servable day-time eclipses.

Ǣ The ǤǠǢǥ-month lunar period

After 223 synodic months the Sun has progressed ∼10◦ with respect to its position one
Saros earlier so that the exact length of the Saros is affected by the variable velocity of
the Sun (the solar anomaly). At maximum solar velocity 10 days (the excess of one Saros
over 18 years) correspond to ∼10◦ and at minimum velocity to ∼9◦ so that the average
time between two eclipses one Saros apart may differ by about 2 hours (the time for the
Moon to traverse 1◦).

34 Steele ǠǞǞǞ. 35 The Saros scheme discovered by Strassmaier in the
ǟǦǧǞs; see Aaboe, Britton, et al. ǟǧǧǟ.

36 Pannekoek ǟǧǟǦ.
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Thus an improved lunar velocity period can be derived by eliminating the effect of
solar anomaly or – phrased in Babylonian language – the variable velocity of the Sun in
its orbit. As we know from Babylonian planetary theory this is achieved by constructing
a new ‘great’ period from a linear combination of shorter observed periods such that
they span an integer number of solar years.

For this construction we need a relation between the length of the Saros, the period
after which the Moon returns to its orbital velocity (the lunar anomalistic period), and
the solar year after which the Sun returns to its orbital velocity (the solar anomalistic
period), both expressed in synodic months. By definition the Saros is equivalent to 16 lu-
nar velocity periods spanning 223 synodic months. The length of the solar year may be
expressed in synodic months by using the Sirius period relation discussed above where
we have seen that 27 solar years correspond to 334 synodic months. We then find that
one solar year lasts 334/27= 12.37 months, corresponding to 12 months and 11 days, or
approximately 12 1/3 months. The Sirius period relation further implies that three Saroi
(669 synodic months) correspond to 54 solar years (668 synodic months)+ 1 month so
that one Saros of 223 synodic months lasts 18 years+ 1/3 month. Using these relations
the Babylonian astronomers may have computed the smallest common multiple of the
synodic month, the solar year and the Saros to find that

37 Saroi = 37 × 223 months = 8251 months
= 37 × (18 years + 1/3 month) = 666 years + 12 1/3 months = 667 years.

Thus 37 Saroi are equivalent to 37×16 = 592 lunar velocity periods or 37×223 = 8251
synodic months and last 667 solar years.

Using this relation as a starting point I display in Tab. Ǡ other relations that fit within
an integer number of years by subtracting 54 years (= 3 Saroi − 1 month) in steps. The
entries in Tab. Ǡ are the only linear combinations of an integer number of Saroi and at
most 12 lunar months that result in periods of an integer number of solar years defined
according to the Ǡǥ-year Sirius period relation. These relations may also be considered
as linear combinations between ǠǠǡ-month periods (Saroi) and the more primitive ǟǢ-
month periods providing improved approximations to the lunar velocity period. Thus
starting with 8251 = 37× 223+ 0× 14 months making up 592 lunar velocity periods,
we have 7583 = 33× 223+ 16× 14 months making up 544 velocity periods, 6915 =

29×223+32×14 months making up 496 velocity periods, 6247 = 25×223+48×14
months making up 448 velocity periods, etc.
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Period
[years]

Saroi Months Months
added

Π
[months]

Largest
factor

Z Largest
factor

Vel. per.
[months]

667 37 8251 0 8251 223 592 37 13.937500

613 34 7582 1 7583 7583 544 17 13.939338

559 31 6913 2 6915 461 496 31 13.941532

505 28 6244 3 6247 6247 448 7 13.944196

451 25 5575 4 5579 797 400 5 13.947500

397 22 4906 5 4911 1637 352 11 13.951705

343 19 4237 6 4243 4243 304 19 13.957237

289 16 3568 7 3575 143 256 2 13.964844

235 13 2899 8 2907 17 208 13 13.975962

181 10 2230 9 2239 2239 160 5 13.993750

127 7 1561 10 1571 1571 112 7 14.026786

73 4 892 11 903 301 64 2 14.109375

19 1 223 12 235 47 16 2 14.687500

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Tab. Ǡ Linear combinations of Saros periods and lunar months resulting in an integer number of solar years.

Based on the data in Tab. Ǡ one can make the following observations:

– The ǤǠǢǥ-month period is among the constructed periods Π listed in column (v).

– The values of the ‘great’ periods Π are often prime numbers and not reducible to
products of nice numbers as follows from the largest factors in column (vi).

– The wave numbers Z result from multiplication of the number of Saroi in column
(ii) by 16 (the number of anomaly periods contained in one Saros)

– Only about half of the wave numbers Z are reducible to factors smaller than 10
(column (viii)).

– The relation 28 Saroi+ 3 months= 6247 months which underlies the derivation of
the ǤǠǢǥ-month period naturally explains the ratio 3/28 which plays a central role in
the arithmetical structure of function Φ and in the computation of function G.37

37 See HAMA, ǢǦǢ–ǢǦǦ and Ǣǧǥ–Ǣǧǧ.
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– The ǤǠǢǥ-month period provides the best approximation to the modern value of
the anomalistic period of 13.943355 synodic months (column (ix)).

Why did the Babylonian scholars select the ǤǠǢǥ-month period from the possible pe-
riods listed in Tab. Ǡ? I propose that the answer to this question may be sought in
a combination of astronomical considerations and numerical convenience. It is clear
that a Saros of 223 months provides a much better approximation to 16 lunar velocity
periods than 14 months to one velocity period. This implies that the best ‘great’ periodΠ must be chosen from the candidate periods in the upper half of Tab. Ǡ because they
may be considered as linear combinations of ǠǠǡ-month and ǟǢ-month periods which
are most strongly dominated by the ǠǠǡ-month period. Among those candidate periods
the ǤǠǢǥ-month period is the only one for which all 6247 function values are different
because 6247 is a prime number and for which the wave numberZ is reducible to a small
fairly ‘nice’ integer number. The fact that the ǤǠǢǥ-period also provides the most accu-
rate approximation to the value of the lunar velocity period must then be considered as
accidental.

ǣ Function F of system A

Brack-Bernsen and Schmidt were the first to realize that the sum of the Lunar Four (des-
ignated Σ by them) provided a good approximation to twice the lunar velocity around
Full Moon.38 That this must have provided the basis for the choice of the other param-
eters characterizing function F of system A (the amplitude and the average value) can
best be demonstrated by showing how remarkably well the lunar velocity function F of
system A reproduces the observed Σ/2 values. This is done in Fig. ǟ where I have plotted
Σ/2-values during 10 years in the middle of the sixth century BC together with function F
values computed from its defining parameters: Π = 6247, Z = 448, d = 0◦;42, andμ = 13◦;30,30.39 Notice that 42 is a multiple of 7, the largest factor in the wave numberZ (column (viii) in Tab. Ǡ). In view of the excellent fit of function F to the variable lunar
velocity I believe that the ǤǠǢǥ-month period was first and foremost constructed to pro-
vide an improved lunar velocity period and that function F was the first lunar function
developed.

38 Brack-Bernsen and Schmidt ǟǧǧǢ. 39 See HAMA, ǢǥǦ–Ǣǥǧ.

ǟǟǥ



̤̙̕̚̕ ̔̕ ̟̞̗̚

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

620 640 660 680 700 720 740

Lunation number (#1 = January 600 BC) 

L
u

n
a
r 

v
e
lo

c
it

y
 (

d
e
g

re
e
s
/d

a
y
)

Σ
Σ

Fig. ǟ Synthetic lunar velocity data (small dots with error bars) and function F2 of system A (large open dots) for
the years 550–540 BC. The lunar velocity data are computed from synthetic Lunar Four data taken from a database
generated for the period 750–0 BC. Error bars in the (synthetic) observational data are estimated by comparing the
Cambyses ǢǞǞ Lunar Four data (Britton ǠǞǞǦ) with synthetic data and noting that the errors in Σ (the sum of the
Lunar Four) are twice those in the individual Lunar Four values and that Σ/2 is displayed.

Ǥ Function Φ of system A

According to the text BM 36705+ function Φ was meant to represent the magnitude of
the change in the time difference (of about 8 hours) between two lunar eclipses one Saros
apart,40 and thus originally applied to Full Moon dates only (designated Φ2).41 The text
mentions the small number 0;17,46,40 as the magnitude of this change. Since 0;17,46,40
UŠ corresponds to 1;11,6,40 minutes of time it follows that function Φ predicts that the
time difference between two eclipses one Saros apart changes only very slowly. This
is qualitatively in agreement with observation but quantitatively too small because in
reality eclipse time differences change by up to about 3 UŠ between eclipses one Saros

40 Neugebauer ǟǧǣǥ.
41 An alternative interpretation of function Φ was

suggested by Brack-Bernsen (Brack-Bernsen ǟǧǧǞ;
Brack-Bernsen ǟǧǧǥ). Struck by the fact that func-
tion Φ provided a remarkably good fit to the sum Σ
of the Lunar-Four with 100 UŠ added, she suggested
that function Φ was meant to represent the quantityΣ + 100 UŠ. Her suggestion was recently criticized

and refuted by Britton (ǠǞǞǧ, Ǣǟǣ–ǢǟǤ). However,
Brack-Bernsen’s basic observation that function Φ
and the quantity Σ are in phase is correct. Instead
I have argued above that the fact that the quantityΣ provides a good approximation to twice the daily
lunar velocity at Full Moon (see Fig. ǟ) may have
been used by the Babylonian scholars to construct
function F rather than function Φ.
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apart.42 In view of the limited accuracy of their measurement of eclipse times,43 it is
amazing that the Babylonian scholars managed to observe this small gradual change at
all. They correctly concluded that this slow change must be due to the variable lunar
velocity and could therefore be modeled by a zigzag function with the same period
and wave number as the lunar velocity function F. The fact that they also realized that
functions Φ and F have the same phase is more miraculous because that is far from
obvious as argued earlier in this paper.44

I will show elsewhere45 that function Φ2 indeed provides a fairly satisfactory fit to
the differences of eclipse times between successive lunar eclipses for all 38 Saros lines in
the Saros scheme. This fit is superior to the early zigzag function in BM 4586146 in the
sense that one and the same function Φ2 fits eclipse time differences both for odd and
even Saros lines and that it models the slow change in the eclipse time difference with
time but it is inferior in the sense that the accuracy with which it fits the eclipse time
differences as a whole is less than that of the fits of the zigzag function in BM 45861 for
odd and even Saros lines separately.

In the early texts in which full-fledged versions of functions Φ and F are encountered
they are given in their truncated form,47 while in the later ephemerides we only find the
pure versions. I think that this may have to do with the fact that initially Φ2 was meant
to model eclipse time differences but that later its use in the ephemerides was limited to
the chronological connection of ephemerides and to its application as auxiliary function
for the computation of function G.48

ǥ Function F of system B

Lunar velocity periods of 251 and 223 lunar months are very hard to detect in Lunar
Four observations because their effect is drowned in the more crude but fairly obvious
ǟǢ-month period. The fact that 251 synodic months, the period chosen for function F of
system B, equals 223+2×14 synodic months is not of much help, because it is not clear
why this particular linear combination of 223 and 14 synodic months may have been
chosen. I believe that the most straightforward way by which Babylonian astronomers

42 See Appendix C1 of Britton ǠǞǞǥb.
43 In Mesopotamia eclipse times were measured with

respect to sunrise and sunset presumably with the
aid of water clocks. Steele, Stephenson, and Mor-
rison (ǟǧǧǥ) have shown that the random errors
in the Babylonian measurements of eclipse times
amount to about 2 UŠ while systematic errors of
about 10% are expected due to clock drift.

44 See again Aaboe ǟǧǤǦ, ǟǞ–ǟǟ.
45 This paper is a progress report of a more extensive

study on the early development of Babylonian lunar
theory that I intend to publish separately.

46 Discussed by Steele ǠǞǞǠ and Brack-Bernsen and
Steele ǠǞǞǣ.

47 Aaboe and Sachs ǟǧǤǧ.
48 See HAMA, ǣǞǣ–ǣǟǡ.
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were able to single out the velocity period of 251 synodic months is based on its superior
accuracy as derived by continuing function F of system A.

We have seen above that after one Saros of 223 synodic months function Φ2 returns
to a value that differs from its previous value by the small amount of 0;17,46,40 UŠ.
Similarly, according to function F of system A (which has the same amplitude and phase
as function Φ but a different amplitude and initial value), after 223 months the lunar
velocity attains a value that differs only 0◦;4,30 per day from its value 223 months before.
While this is quite a small difference it is not the smallest one possible. It is easy to show
by numerically continuing function F of system A that the smallest difference between
all possible pairs of its 6247 function values is 0◦;0,5,37,30 per day for a pair separation
of 2998 synodic months. The next one up has a velocity difference of 0◦;0,11,15 per day,
twice larger than the smallest value, at a pair separation of 251 months. This ‘period’ is
the first one found by continuing function F beyond 223 months, and the one apparently
chosen for function F of system B.

In view of the algorithms developed by Babylonian astronomers to numerically
check some of the computations in their ephemerides, one would expect that they
should also have been able to find the larger more accurate velocity period of 2998
months but that the Ǡǣǟ-months period was chosen because of numerical convenience.
The fact that 251 synodic months does not correspond to an integer number of solar
years might indicate that it was indeed not found from a linear combination of smaller
periods as is the case for most other Babylonian lunar and planetary periods. The argu-
ment presented here for the choice of the Ǡǣǟ-month period for function F of system B
suggests that system B must have been developed after system A.

Ǧ Early solar models

The most obvious starting point for early solar models is the Ǡǥ-year Sirius period be-
cause it defines a period after which the Sun returns exactly to its position in the sky
expressed in synodic months, the time unit of Babylonian astronomy. Now, as we have
seen before, the accuracy of the Ǡǥ-year period is limited because the lunar calendar date
of first visibility of Sirius regresses ∼1 day after 27 years. Thus a better approximation is
provided by a modified Ǡǥ-year period: 334 synodic months − 1 day = 27 solar years.
Making use of the identity 30 days (tithis)= 1 month, and multiplying both sides of
this relation by 30 we immediately find the system B solar period relation: 10 020 −

1 month = 10 019 months = 810 years (see Tab. ǟ). Cast in Babylonian sexagesimal
notation we find that after a period of Π= 2,46,59 months the Sun has completedZ= 13,30 revolutions. This period relation is used in system B to construct the zigzag
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function A for the solar velocity. It yields a year length of 10019/810= 12;22,8,53,20 syn-
odic months.

Since year-length enters a lot of astronomical computations it is convenient to use
a truncated or rounded-off value, i.e. 12;22,08 or 12;22,09 synodic months. Both values
can be translated into period relations. We find: Π= 2783 (46,23), Z= 225 (4,45) for
a year-length of 12;22,08 months, and Π= 14843 (4,7,23), Z= 1200 (20,0) for 12;22,09
months. Apparently Babylonian astronomers chose the smaller period for their system A
function B, possibly because an ‘epact’49 of 11;04 tithis is more attractive for computa-
tional purposes than 11;04,30 tithis.

ǧ Discussion

I begin this discussion about the time frame and evolution of the early phase of Baby-
lonian lunar theory by noting that function Φ was originally constructed to represent
eclipse time differences and thus by definition applied to full moon dates only (desig-
nated Φ2). Using the known relation of Φ2 to the Babylonian calendar, we have seen
that Φ2 attains the value 2,0,0,0,0,0 on day 13, month VIII in year 1 of Cambyses, corre-
sponding to Julian date 17 November 529 BC, the date of an attested lunar eclipse listed
in the Early Saros Scheme.50 I suggest that this nice sexagesimal number was chosen as
initial value of function Φ2. Notice that Brack-Bernsen and Steele in their analysis of
the early attempt to fit eclipse time differences by zigzag functions in BM 45861 suggest
that these functions were constructed around 530 BC,51 surprisingly close to the eclipse
date of the initial value of the more sophisticated function Φ2.

The lunar eclipse one Saros after the one of 17 November 529 BC took place in
the morning of day 13, month VIII in year 11 of Darius, corresponding to Julian date
29 November 511 BC. This lunar eclipse was visible in Babylon with first contact occur-
ring at 40 UŠ before sunrise,52 but there is no record of this eclipse in presently known
astronomical cuneiform texts. The eclipse time difference between these two eclipses is
2,01 UŠ, within the measurement error identical to the initial value adopted for func-
tion Φ2. This does not only hold for this eclipse pair but it can be shown that the average
eclipse time difference between all lunar eclipses in this Saros line during the sixth and
the first half of the fifth century BC equals 2,0 ± 0,01 UŠ.53

49 The ‘epact’ is defined as the excess of a solar year
over the lunar year of 12 synodic months. An epact
of 11;04 tithis is also used in Babylonian planetary
theories, both of system A and B (Neugebauer ǟǧǥǣ,
ǡǧǣ–ǡǧǤ).

50 Steele ǠǞǞǞ.
51 Brack-Bernsen and Steele ǠǞǞǣ.
52 Huber and De Meis ǠǞǞǢ, ǟǦǦ.
53 See Britton ǠǞǞǥb, Appendix C1.
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If the 529 BC lunar eclipse is indeed associated with the initial value of function Φ2

it provides a ‘terminus post quem’ for the construction of functions Φ and F. If the
full-fledged versions of both functions for the years 475–457 BC in BM 36737+ may be
considered as a ‘terminus ante quem’ functions Φ and F were conceived before 450 BC.
Of course, the conception date may have been later if the computations in the text were
carried out for comparison with older data. A strong argument in favor of an early date
for the derivation of the ǤǠǢǥ-month period is provided by the fact that it is partly based
on the Ǡǥ-year Sirius cycle which was used for calendar purposes in the sixth century BC
but was superseded by the ǟǧ-year cycle around 500 BC.54 This suggests that functionsF and Φ were conceived in the late sixth century, consistent with an initial value for Φ2

associated with the lunar eclipse of November 529 BC.
Recently Britton has published a detailed study of Babylonian lunar theory in which

he suggests that it dates from shortly after 404 BC and that its creation may be attributed
to one single author.55 While the final version of the theory as we know it from the lunar
ephemerides of the Seleucid and Arsacid era may well have been formulated by one
single Babylonian scholar I prefer to think that it is the end product of a more gradual
process to which several generations of Babylonian scholars have contributed. As argued
here this gradual process may have started with the construction of the improved lunar
anomaly period of 6247 synodic months on which functions F and Φ of system A are
built.

Britton anchors function Φ2 in time by using the shortest Ǥ-month time interval
between two lunar eclipses since systematic records were maintained (about 750 BC)
and by assigning the associated Φ-value of 2,8,53,20 to the syzygy corresponding to the
eclipse of 18 August 404 BC at the end of this interval.56 He assumes that the final formu-
lation of Babylonian lunar theory was completed shortly afterwards and he uses this as
constraints for dating the invention of the Babylonian theoretical zodiac.57 I must con-
fess that I find his reasoning far from convincing. One – but not the only – reason for
this is that dating the minimum Ǥ-month eclipse time interval by Babylonian observers
is doomed to be extremely uncertain because the accuracy with which they could de-
termine this interval from observed eclipse times is of the order of 1 hour (see note Ǣǡ
above).

If my suggestion for the construction of the solar periods for system A and B is
correct they both derive from the same refined Ǡǥ-year Sirius relation. In system B the
period relation obtained was directly used for the construction of function A. In sys-
tem A the original period relation was modified to obtain a numerically suitable value

54 Britton ǠǞǞǠ; Britton ǠǞǞǥa.
55 Britton ǠǞǞǥb; Britton ǠǞǞǧ; Britton ǠǞǟǞ.

56 Britton ǠǞǞǧ, ǢǞǢ–ǢǞǣ.
57 Britton ǠǞǟǞ.
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of the year length, associated with the derivation of function B. This does not provide
a direct clue about the priority of the two functions.

Given the fact that the lunar function F (system A) may already have been fully de-
veloped by about 450 BC and that a primitive version of the solar function B (system A)
with a year length of 12;23 months was used in a text from about 400 BC,58 we may con-
clude that the system A solar model (function B) was developed after the lunar velocity
model (function F) and that it took at least half a century, and probably longer, to reach
its canonical form.

In summary, I propose that the development of Babylonian lunar theory was a grad-
ual process. It started in the late sixth century BC with the derivation of the ‘great’ pe-
riod of 6247 synodic months for the lunar velocity variation. Based on this period the
lunar velocity function F and the eclipse time difference function Φ of system A were
constructed shortly afterwards. The next step was to model the position of the Moon
at syzygy and during eclipses. Therefore the position of the Sun at syzygy was needed,
as well as a theoretical coordinate system. Several early attempts of system A-type so-
lar functions are textually attested (BM 36737+ and BM 36822+). The Babylonian 360◦

zodiac may have been introduced around 450 BC while it took until the early fourth cen-
tury BC before the solar longitude function B of system A reached its canonical form.
System A lunar theory was apparently finished by 320 BC. System B lunar theory may
have been a later invention, possibly dating from around 300 BC.

58 Aaboe and Sachs ǟǧǤǧ, Text A.
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